Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nature ; 612(7938): 162-169, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36418402

RESUMEN

The poly-ADP-ribosyltransferase tankyrase (TNKS, TNKS2) controls a wide range of disease-relevant cellular processes, including WNT-ß-catenin signalling, telomere length maintenance, Hippo signalling, DNA damage repair and glucose homeostasis1,2. This has incentivized the development of tankyrase inhibitors. Notwithstanding, our knowledge of the mechanisms that control tankyrase activity has remained limited. Both catalytic and non-catalytic functions of tankyrase depend on its filamentous polymerization3-5. Here we report the cryo-electron microscopy reconstruction of a filament formed by a minimal active unit of tankyrase, comprising the polymerizing sterile alpha motif (SAM) domain and its adjacent catalytic domain. The SAM domain forms a novel antiparallel double helix, positioning the protruding catalytic domains for recurring head-to-head and tail-to-tail interactions. The head interactions are highly conserved among tankyrases and induce an allosteric switch in the active site within the catalytic domain to promote catalysis. Although the tail interactions have a limited effect on catalysis, they are essential to tankyrase function in WNT-ß-catenin signalling. This work reveals a novel SAM domain polymerization mode, illustrates how supramolecular assembly controls catalytic and non-catalytic functions, provides important structural insights into the regulation of a non-DNA-dependent poly-ADP-ribosyltransferase and will guide future efforts to modulate tankyrase and decipher its contribution to disease mechanisms.


Asunto(s)
Biocatálisis , Microscopía por Crioelectrón , Polimerizacion , Tanquirasas , beta Catenina , Tanquirasas/química , Tanquirasas/metabolismo , Tanquirasas/ultraestructura , Activación Enzimática , Dominio Catalítico , Vía de Señalización Wnt , Secuencias de Aminoácidos
2.
Structure ; 26(8): 1101-1115.e6, 2018 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-29983373

RESUMEN

The human NDR family kinases control diverse aspects of cell growth, and are regulated through phosphorylation and association with scaffolds such as MOB1. Here, we report the crystal structure of the human NDR1 kinase domain in its non-phosphorylated state, revealing a fully resolved atypically long activation segment that blocks substrate binding and stabilizes a non-productive position of helix αC. Consistent with an auto-inhibitory function, mutations within the activation segment of NDR1 dramatically enhance in vitro kinase activity. Interestingly, NDR1 catalytic activity is further potentiated by MOB1 binding, suggesting that regulation through modulation of the activation segment and by MOB1 binding are mechanistically distinct. Lastly, deleting the auto-inhibitory activation segment of NDR1 causes a marked increase in the association with upstream Hippo pathway components and the Furry scaffold. These findings provide a point of departure for future efforts to explore the cellular functions and the mechanism of NDR1.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Células Epiteliales/enzimología , Factor de Crecimiento de Hepatocito/química , Proteínas Asociadas a Microtúbulos/química , Proteínas Serina-Treonina Quinasas/química , Proteínas Proto-Oncogénicas/química , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Proteínas de Ciclo Celular , Línea Celular Tumoral , Clonación Molecular , Cristalografía por Rayos X , Células Epiteliales/citología , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Regulación de la Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Células HEK293 , Factor de Crecimiento de Hepatocito/genética , Factor de Crecimiento de Hepatocito/metabolismo , Humanos , Cinética , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Modelos Moleculares , Mutación , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Serina-Treonina Quinasa 3 , Transducción de Señal , Especificidad por Sustrato
3.
Mol Cell ; 63(3): 498-513, 2016 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-27494558

RESUMEN

The poly(ADP-ribose) polymerase (PARP) Tankyrase (TNKS and TNKS2) is paramount to Wnt-ß-catenin signaling and a promising therapeutic target in Wnt-dependent cancers. The pool of active ß-catenin is normally limited by destruction complexes, whose assembly depends on the polymeric master scaffolding protein AXIN. Tankyrase, which poly(ADP-ribosyl)ates and thereby destabilizes AXIN, also can polymerize, but the relevance of these polymers has remained unclear. We report crystal structures of the polymerizing TNKS and TNKS2 sterile alpha motif (SAM) domains, revealing versatile head-to-tail interactions. Biochemical studies informed by these structures demonstrate that polymerization is required for Tankyrase to drive ß-catenin-dependent transcription. We show that the polymeric state supports PARP activity and allows Tankyrase to effectively access destruction complexes through enabling avidity-dependent AXIN binding. This study provides an example for regulated signal transduction in non-membrane-enclosed compartments (signalosomes), and it points to novel potential strategies to inhibit Tankyrase function in oncogenic Wnt signaling.


Asunto(s)
Motivo alfa Estéril , Tanquirasas/metabolismo , Vía de Señalización Wnt , Proteína Axina/metabolismo , Sitios de Unión , Dominio de Reclutamiento y Activación de Caspasas , Catálisis , Cristalografía , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Células HEK293 , Células HeLa , Humanos , Modelos Moleculares , Mutación , Poli(ADP-Ribosa) Polimerasas/metabolismo , Unión Proteica , Conformación Proteica , Multimerización de Proteína , Relación Estructura-Actividad , Tanquirasas/química , Tanquirasas/genética , Transfección
4.
Chem Senses ; 36(5): 425-34, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21343241

RESUMEN

Monellin is a highly potent sweet-tasting protein but relatively little is known about how it interacts with the sweet taste receptor. We determined X-ray crystal structures of 3 single-chain monellin (MNEI) proteins with alterations at 2 core residues (G16A, V37A, and G16A/V37A) that induce 2- to 10-fold reductions in sweetness relative to the wild-type protein. Surprisingly, no changes were observed in the global protein fold or the positions of surface amino acids important for MNEI sweetness that could explain these differences in protein activity. Differential scanning calorimetry showed that while the thermal stability of each mutant MNEI was reduced, the least sweet mutant, G16A-MNEI, was not the least stable protein. In contrast, solution spectroscopic measurements revealed that changes in protein flexibility and the C-terminal structure correlate directly with protein activity. G16A mutation-induced disorder in the protein core is propagated via changes to hydrophobic interactions that disrupt the formation and/or position of a critical C-terminal poly-(L-proline) II helix. These findings suggest that MNEI interaction with the sweet taste receptor is highly sensitive to the relative positions of key residues across its protein surface and that loss of sweetness in G16A-MNEI may result from an increased entropic cost of binding.


Asunto(s)
Modelos Moleculares , Proteínas de Plantas/química , Proteínas de Plantas/genética , Edulcorantes , Rastreo Diferencial de Calorimetría , Cristalografía por Rayos X , Mutación , Prolina/genética , Pliegue de Proteína , Estructura Secundaria de Proteína , Edulcorantes/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...