Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 364: 143034, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39117083

RESUMEN

Bisphenol S (BPS) is a common pollutant in the environment and has posed a potential threat to aquatic animals and human health. To accurately assess the pollution level and ecological risk of BPS, there is an urgent need to establish simple and sensitive detection methods for BPS. In this study, BPS complete antigen was successfully prepared by introducing methyl 4-bromobutyrate and coupling bovine serum albumin (BSA). The monoclonal antibody against BPS (anti-BPS mAb) with high affinity (1: 256,000) was developed based on the BPS complete antigen, which showed low cross-reactivity with BPS structural analogues. Then, an electrochemical immunosensor was constructed to detect BPS using multi-walled carbon nanotubes and gold nanoflower composites as signal amplification elements and using anti-BPS mAb as the probe. The electrochemical immunosensor had a linear range from 1 to 250 ng⋅mL-1 and a limit of detection (LOD) down to 0.6 ng⋅mL-1. Additionally, a more stable and sensitive lateral flow immunoassay (LFIA) for BPS was developed based on iridium oxide nanoparticles, with a visual detection limit of 1 ng⋅mL-1, which was 10 times lower than that of classical Au-NPs LFIA. After evaluation of their stability and specificity, the reliability of these two methods were further validated by measuring BPS concentrations in the water and fish tissues. Thus, this study provides sensitive, robust and rapid methods for the detection of BPS in the environment and organisms, which can provide a methodological reference for monitoring environmental contaminants.


Asunto(s)
Técnicas Electroquímicas , Iridio , Límite de Detección , Fenoles , Sulfonas , Inmunoensayo/métodos , Fenoles/análisis , Fenoles/química , Iridio/química , Técnicas Electroquímicas/métodos , Sulfonas/química , Sulfonas/análisis , Oro/química , Nanopartículas del Metal/química , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Animales , Técnicas Biosensibles/métodos , Contaminantes Químicos del Agua/análisis , Nanotubos de Carbono/química , Nanopartículas/química
2.
Mar Pollut Bull ; 194(Pt A): 115248, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37572429

RESUMEN

In order to improve the sensitivity of lateral flow immunoassays (LFIAs) for the detection of piscine vitellogenin (Vtg), a well-established biomarker for environmental estrogens, Au coated Ag nanoflowers (Ag@Au NFs) were used as labeling probes to develop a LFIA for marine medaka Vtg. The synthesized Ag@Au NFs with good monodispersity had an average diameter of 44.1 nm and absorbance peak of 524 nm. When the concentration of goat anti-mouse IgG and anti-Vtg polyclonal antibody (anti-Vtg PAbs) were 1.3 and 0.4 mg/mL, respectively, the detection range of the LFIA was 0.19-25 ng/mL, and the visual detection limit was 0.1 ng/mL, which was approximately 80 times lower than that of LFIAs based on other nanoparticles (Au NPs, Ag NPs, Au NFs, and FM). After evaluation of its specificity and robustness, the usefulness of Ag@Au NFs labeled LFIA was validated by measuring Vtg induction in the plasma of marine medaka exposed to bisphenol A, a weak estrogenic chemical. This highly sensitive lateral flow immunoassay could detect Vtg biomarker within 15 min without the need of expensive and complicated instruments, and thus offered an ultrasensitive and robust on-site detection method for estrogenic activity in field environment.


Asunto(s)
Nanopartículas del Metal , Oryzias , Animales , Vitelogeninas , Estrógenos , Inmunoensayo , Biomarcadores , Nanopartículas del Metal/toxicidad
3.
Talanta ; 265: 124838, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37453395

RESUMEN

Herbicide prometryn has become a common pollutant in aquatic environments and caused adverse impacts on ecosystems. This study developed an ultrasensitive electrochemical aptasensor for prometryn based on its highly affinitive and specific aptamer and Ag@Au nanoflowers (Ag@AuNFs) for signal amplification. Firstly, this study improved the Capture-SELEX strategy to screen aptamers and obtained aptamer P60-1, which had a high affinity (Kd: 23 nM) and could distinguish prometryn from its structural analogues. Moreover, the typical stem-loop structure in aptamer P60-1 was found to be the binding pocket for prometryn. Subsequently, an electrochemical aptasensor for prometryn was established using multiwalled carbon nanotubes and reduced graphene oxide as electrode substrate, Ag@Au NFs as signal amplification element, and aptamer P60-1 as recognition element. The aptasensor had a detection range of 0.16-500 ng/mL and a detection limit of 60 pg/mL, which was much lower than those of existing detection methods. The aptasensor had high stability and good repeatability, and could specifically detecting prometryn. Furthermore, the utility of the aptasensor was validated by measuring prometryn in environmental and biological components. Therefore, this study provides a robust and ultrasensitive aptasensor for accurate detection for prometryn pollution.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Grafito , Herbicidas , Nanotubos de Carbono , Nanotubos de Carbono/química , Prometrina , Aptámeros de Nucleótidos/química , Ecosistema , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Oro/química , Límite de Detección , Grafito/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...