RESUMEN
Ovarian cancer caused the highest cancer-related mortality among female reproductive system malignancies. Platinum-based chemotherapy is still the footstone of the chemotherapy for ovarian cancer. However, the molecular mechanisms underlying cisplatin insensitivity and resistance remain unclear. SHC SH2 domain-binding protein 1 (SHCBP1) plays critical roles in the progression and drug resistance of different types of cancer. However, the biological function of SHCBP1 in ovarian cancer progression and cisplatin resistance remains obscure. In this study, we found that SHCBP1 was upregulated in ovarian cancer and the upregulated SHCBP1 has growth-promoting effect on ovarian cancer cells. Furthermore, SHCBP1 silencing sensitize ovarian cancer cells to cisplatin (hereafter referred to as CDDP). Mechanism analysis revealed that SHCBP1 activated the Akt/mTOR pathway and further inhibited autophagy in ovarian cancer cells. Meanwhile, autophagy inhibitors combined with SHCBP1 knockdown enhances CDDP sensitivity. In addition, knockdown of SHCBP1 restricted the proliferation of tumors and increased the cisplatin sensitivity in vivo. These findings suggested that upregulated SHCBP1 promoted the proliferation and CDDP resistance of ovarian cancer. The combination of SHCBP1 inhibition and cisplatin treatment might lead to substantial progress in ovarian cancer targeted therapy.
RESUMEN
Antibiotic resistance genes (ARGs) have been identified as emerging contaminants, raising concerns around the world. As environmentally friendly bioagents (BA), plant growth-promoting rhizobacteria (PGPR) have been used in agricultural systems. The introduction of BA will lead to the turnover of the microbial communities structure. Nevertheless, it is still unclear how the colonization of the invaded microorganisms could affects the rhizosphere resistome. Consequently, 190 ARGs and 25 integrative and conjugative elements (ICEs) were annotated using the metagenomic approach in 18 samples from the Solanaceae crop rhizosphere soil under BA and conventional treatment (CK) groups. Our study found that, after 90 days of treatment, ARG abundance was lower in the CK group than in the BA group. The results showed that aminoglycoside antibiotic resistance (OprZ), phenicol antibiotic resistance (OprN), aminoglycoside antibiotic resistance (ceoA/B), aminocoumarin antibiotic resistance (mdtB) and phenicol antibiotic resistance (MexW) syntenic with ICEs. Moreover, in 11 sequences, OprN (phenicol antibiotic resistance) was observed to have synteny with ICEPaeLESB58-1, indicating that the ICEs could contribute to the spread of ARGs. Additionally, the binning result showed that the potential bacterial hosts of the ARGs were beneficial bacteria which could promote the nutrition cycle, such as Haliangium, Nitrospira, Sideroxydans, Burkholderia, etc, suggesting that bacterial hosts have a great influence on ARG profiles. According to the findings, considering the dissemination of ARGs, BA should be applied with caution, especially the use of beneficial bacteria in BA. In a nutshell, this study offers valuable insights into ARGs pollution control from the perspective of the development and application of BA, to make effective strategies for blocking pollution risk migration in the ecological environment.
RESUMEN
Background: Radiation-induced hemorrhagic cystitis (RHC) is a chronic inflammatory disease in patients undergoing radiation therapy that causes a cluster of symptoms which may have a latent period of months to years. The current non-invasive treatments include drug treatment and hyperbaric oxygen therapy (HBOT), which has been widely applied for RHC so far but with limited evidence. Thus, we conducted a systematic review and meta-analysis to clarify the effects and safety of HBOT for RHC. Methods: A systematic review and meta-analysis were utilized, searching in the databases of Embase, Pubmed, and Web of Science. The primary endpoint of the present study was complete remission of hematuria. The meta-analysis was conducted using a random effects model, and a pooled odds ratio with 95% CI was calculated. Results: A total of 317 studies were searched and fourteen articles with 556 patients were collected. The results showed that a total of 500 patients (89.9%) had symptom improvement, and the pooled results demonstrated that 55% of patients with HBOT had complete remission of hematuria (95% CI 51-59%). Conclusions: A significant improvement of symptoms when treated with HBOT was shown in this meta-analysis for patients with RHC.
RESUMEN
Understanding the response of soil microbial communities to pathogenic Ralstonia solanacearum is crucial for preventing bacterial wilt outbreaks. In this study, we investigated the soil physicochemical and microbial community to assess their impact on the pathogenic R.solanacearum through metagenomics. Our results revealed that certain archaeal taxa were the main contributors influencing the health of plants. Additionally, the presence of the pathogen showed a strong negative correlation with soil phosphorus levels, while soil phosphorus was significantly correlated with bacterial and archaeal communities. We found that the network of microbial interactions in healthy plant rhizosphere soils was more complex compared to diseased soils. The diseased soil network had more linkages, particularly related to the pathogen occurrence. Within the network, the family Comamonadaceae, specifically Ramlibacter_tataouinensis, was enriched in healthy samples and showed a significantly negative correlation with the pathogen. In terms of archaea, Halorubrum, Halorussus_halophilus (family: Halobacteriaceae), and Natronomonas_pharaonis (family: Haloarculaceae) were enriched in healthy plant rhizosphere soils and showed negative correlations with R.solanacearum. These findings suggested that the presence of these archaea may potentially reduce the occurrence of bacterial wilt disease. On the other hand, Halostagnicola_larseniia and Haloterrigena_sp._BND6 (family: Natrialbaceae) had higher relative abundance in diseased plants and exhibited significantly positive correlations with R.solanacearum, indicating their potential contribution to the pathogen's occurrence. Moreover, we explored the possibility of functional gene sharing among the correlating bacterial pairs within the Molecular Ecological Network. Our analysis revealed 468 entries of horizontal gene transfer (HGT) events, emphasizing the significance of HGT in shaping the adaptive traits of plant-associated bacteria, particularly in relation to host colonization and pathogenicity. Overall, this work revealed key factors, patterns and response mechanisms underlying the rhizosphere soil microbial populations. The findings offer valuable guidance for effectively controlling soil-borne bacterial diseases and developing sustainable agriculture practices.
RESUMEN
Flue-cured tobacco (Nicotiana tabacum L.) is a significant cash crop globally. In August 2022, necrotic lesions on stem associated with root rot and wilting were observed on flue-cured tobacco (Cv. Yunyan 87) in fields located in Banxin village (27.95N,109.60E) of Fenghuang county in Xiangxi Autonomous Prefecture, Hunan Province, China. The affected and damaged area of tobacco is approximately 10 hectares, with adisease incidence of 60%. Lots of small black speckling within the lower stem of the affected plant, vascular tissue changed to black, dry rot, and looked like charcoal breezes. Small pieces were cut from healthy and diseased tissues, surface sterilized with 5% NaClO for 3 min and 75% ethanol for 1 min, rinsed with sterile distilled water and air-drying, incubated on oat medium incubated at 28â for five days. These isolates grew fast and produced typical black microsclerotia. The morphological were septate hyphae and microsclerotia. The microsclerotia were black and regularly round, with a 42.5 - 92.9 µm diameter. These morphological features were consistent with Macrophomina phaseolina (Smith and Wyllie 1999). The internal transcribed spacer (ITS) rDNA and translation elongation factor 1-α (TEF1-α) genes of three representative isolates were amplified and sequenced using the primers ITS1/ITS4 and EF1-728F/EF2R (Machado et al. 2019). Our resulting sequences (GenBank accessions OR435093, OR435101, OR435102 for ITS; OR891780, OR891781 and OR891782 for EF1-α) showed 99-100% similarity with M. phaseolina by NCBI blast. Phylogenetic analysis was conducted using MEGA-X software with the NJ method. The combined sequences grouped with isolates to M. phaseolina with 100% bootstrap support. The strain XF22 has been sent to the China General Microbiological Culture Collection Center (CGMCC3.25349). Pathogenicity tests were conducted by inoculating potted plants (six plants per isolate, three times) from 45 day-old tobacco seedlings cv. Yunyan 87. Stems were randomly gently scratched with sterile needles, and a 5 mm agar disc with mycelium of the pathogen was attached to the surface of each wound, with a sterilized agar disc as control. Inoculated seedlings were incubated in growth chambers at 26â and 60% RH with a 12 h photoperiod/day. After ten days, symptoms that brown or black lesions on the inoculated lesions were dotted with numerous black, hard microsclerotia similar to those naturally occurring on the diseased plants, but not on the control plants. The same pathogen was re-isolated consistently, fulfilling Koch's postulates. Based on morphological, molecular, and pathogenicity test results, these isolates were identified as M. phaseolina. Charcoal rot of tobacco, caused by M. phaseolina was previously found in Guangxi in 1989 (Zhu et al. 2002), while this is the first report of M. phaseolina causing charcoal rot on flue-cured tobacco in Hunan, China. We speculate that the planting area is influenced by the preceding crop sesame. The soil carries M. phaseolina, which can cause stem rot of sesame, leading to the occurrence of tobacco charcoal rot. Our results indicated that charcoal rot caused by M. phaseolina is a new threat to flue-cured tobacco production and lue-cured tobacco might be acting as a reservoir and spreading this pathogen to other economically crops in China.
RESUMEN
Correlating the structure and dynamics of proteins with biological function is critical to understanding normal and dysfunctional cellular mechanisms. We describe a quantitative method of hydroxyl radical generation via Fe(II)-ethylenediaminetetraacetic acid (EDTA)-catalyzed Fenton chemistry that provides ready access to protein oxidative footprinting using equipment commonly found in research and process control laboratories. Robust and reproducible dose-dependent oxidation of protein samples is observed and quantitated by mass spectrometry with as fine a single residue resolution. An oxidation analysis of lysozyme provides a readily accessible benchmark for our method. The efficacy of our oxidation method is demonstrated by mapping the interface of a RAS-monobody complex, the surface of the NIST mAb, and the interface between PRC2 complex components. These studies are executed using standard laboratory tools and a few pennies of reagents; the mass spectrometry analysis can be streamlined to map the protein structure with single amino acid residue resolution.
Asunto(s)
Radical Hidroxilo , Proteínas , Ácido Edético/química , Radical Hidroxilo/química , Proteínas/análisis , Huella de Proteína/métodos , Estrés Oxidativo , Oxidación-ReducciónRESUMEN
Radiotherapy is inevitably accompanied by some degree of radiation resistance, which leads to local recurrence and even therapeutic failure. To overcome this limitation, herein, we report the room-temperature synthesis of an iodine- and ferrocene-loaded covalent organic framework (COF) nanozyme, termed TADI-COF-Fc, for the enhancement of radiotherapeutic efficacy in the treatment of radioresistant esophageal cancer. The iodine atoms on the COF framework not only exerted a direct effect on radiotherapy, increasing its efficacy by increasing X-ray absorption, but also promoted the radiolysis of water, which increased the production of reactive oxygen species (ROS). In addition, the ferrocene surface decoration disrupted redox homeostasis by increasing the levels of hydroxyl and lipid peroxide radicals and depleting intracellular antioxidants. Both in vitro and in vivo experiments substantiated the excellent radiotherapeutic response of TADI-COF-Fc. This study demonstrates the potential of COF-based multinanozymes as radiosensitizers and suggests a possible treatment integration strategy for combination oncotherapy.
Asunto(s)
Neoplasias Esofágicas , Yodo , Estructuras Metalorgánicas , Humanos , Estructuras Metalorgánicas/farmacología , Metalocenos , Neoplasias Esofágicas/tratamiento farmacológico , Neoplasias Esofágicas/radioterapiaRESUMEN
Background: Tobacco bacterial wilt (TBW) and black shank (TBS) are responsible for substantial economic losses worldwide; however, microbial interactions and metabolisms in response to TBW and TBS pathogens in the tobacco rhizosphere remain unclear. Methods: We explored and compared the response of rhizosphere microbial communities to these two plant diseases with the incidences in moderate and heavy degrees by sequencing of 16S rRNA gene amplicons and bioinformatics analysis. Results and discussions: We found that the structure of rhizosphere soil bacterial communities was significantly (p < 0.05) changed from the incidences of TBW and TBS, which also led to decreased Shannon diversity and Pielou evenness. Compared with the healthy group (CK), the OTUs with significantly (p < 0.05) decreased relative abundances were mostly affiliated with Actinobacteria (e.g., Streptomyces and Arthrobacter) in the diseased groups, and the OTUs with significantly (p < 0.05) increased relative abundances were mainly identified as Proteobacteria and Acidobacteria. Also, molecular ecological network analysis showed that the nodes (<467) and links (<641) were decreased in the diseased groups compared with the control group (572; 1056), suggesting that both TBW and TBS weakened bacterial interactions. In addition, the predictive functional analysis indicated that the relative abundance of genes related to the biosynthesis of antibiotics (e.g., ansamycins and streptomycin) was significantly (p < 0.05) decreased due to incidences of TBW and TBS, and antimicrobial tests showed that some Actinobacteria strains (e.g., Streptomyces) and their secreted antibiotics (e.g., streptomycin) could effectively inhibit the growth of these two pathogens.
RESUMEN
The G12D mutation is among the most common KRAS mutations associated with cancer, in particular, pancreatic cancer. Here, we have developed monobodies, small synthetic binding proteins, that are selective to KRAS(G12D) over KRAS(wild type) and other oncogenic KRAS mutations, as well as over the G12D mutation in HRAS and NRAS. Crystallographic studies revealed that, similar to other KRAS mutant-selective inhibitors, the initial monobody bound to the S-II pocket, the groove between switch II and α3 helix, and captured this pocket in the most widely open form reported to date. Unlike other G12D-selective polypeptides reported to date, the monobody used its backbone NH group to directly recognize the side chain of KRAS Asp12, a feature that closely resembles that of a small-molecule inhibitor, MTRX1133. The monobody also directly interacted with H95, a residue not conserved in RAS isoforms. These features rationalize the high selectivity toward the G12D mutant and the KRAS isoform. Structure-guided affinity maturation resulted in monobodies with low nM KD values. Deep mutational scanning of a monobody generated hundreds of functional and nonfunctional single-point mutants, which identified crucial residues for binding and those that contributed to the selectivity toward the GTP- and GDP-bound states. When expressed in cells as genetically encoded reagents, these monobodies engaged selectively with KRAS(G12D) and inhibited KRAS(G12D)-mediated signaling and tumorigenesis. These results further illustrate the plasticity of the S-II pocket, which may be exploited for the design of next-generation KRAS(G12D)-selective inhibitors.
Asunto(s)
Neoplasias Pancreáticas , Proteínas Proto-Oncogénicas p21(ras) , Humanos , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Mutación , Transformación Celular Neoplásica/genética , Carcinogénesis , Neoplasias Pancreáticas/genéticaRESUMEN
Phytoremediation technology is an important approach applied to heavy metal remediation, and how to improve its remediation efficiency is the key. In this study, we compared the rhizospheric bacterial communities and metals contents in Miscanthus floridulus (M. floridulus) of four towns, including Huayuan Town (HY), Longtan Town (LT), Maoer Village (ME), and Minle Town (ML) around the lead-zinc mining area in Huayuan County, China. The roles of rhizospheric bacterial communities in assisting the phytoremediation of M. floridulus were explored. It was found that the compositions of the rhizospheric bacterial community of M. floridulus differed in four regions, but majority of them were heavy metal-resistant bacteria that could promote plant growth. Results of bioconcentration factors showed the enrichment of Cu, Zn, and Pb by M. floridulus in these four regions were significantly different. The Zn enrichment capacity of ML was the strongest for Cu and stronger than LT and ME for Pb. The enrichment capacity of LT and ML was stronger than HY and ME. These bacteria may influence the different heavy metals uptake of M. floridulus by altering the soil physiochemical properties (e.g., soil peroxidase, pH and moisture content). In addition, co-occurrence network analysis also showed that LT and ML had higher network stability and complexity than HY and ME. Functional prediction analysis of the rhizospheric bacterial community showed that genes related to protein synthesis (e.g., zinc-binding alcohol dehydrogenase/oxidoreductase, Dtx R family transcriptional regulators and ACC deaminase) also contributed to phytoremediation in various ways. This study provides theoretical guidance for selecting suitable microorganisms to assist in the phytoremediation of heavy metals.
Asunto(s)
Metales Pesados , Contaminantes del Suelo , Plomo/análisis , Contaminantes del Suelo/análisis , Metales Pesados/análisis , Zinc/análisis , Poaceae/química , Poaceae/metabolismo , Bacterias/genética , Bacterias/metabolismo , Biodegradación Ambiental , SueloRESUMEN
OBJECTIVES: The purpose of this review was to appraise the quality of evidence of the existing publications on IR, and to perform a meta-analysis on the treatment outcomes of IR. METHODS: The specific PIO questions were as follows: Population: Patients with periapical periodontitis either before or after non-surgical endodontic therapy. INTERVENTION: IR performed with retrograde preparation and retrograde filling. OUTCOMES: the healing, treatment complications, and the factors influencing these outcomes after IR. Electronic and hand searches were performed in the Web of Science, PubMed, CINAHL, and Cochrane Library databases. Two authors independently screened the titles and abstracts for eligibility. The risk of bias was performed using the NIH Quality Assessment Tool, and each study was rated as "Good", "Fair" or "Poor". The analyses were performed on the treatment outcome (healing and complications), and the factors influencing the outcome of the procedure. RESULTS: Fourteen articles were included in the qualitative and quantitative syntheses. One was a prospective cohort study, and the other 13 were retrospective cohort studies. Overall, the evidence of this review was of poor-to-fair quality. The pooled healing rate was 80.2%, and there was a 21.7% of complication rate. Longer follow-up period, the presence of perio-endo disease, the use of non-bioceramic material as retrograde filling, longer extraoral time, and maxillary molar were found to be associated with lower healing rates. However, the differences between the subgroups were not statistically significant. CONCLUSIONS: The present review showed IR yielded a good overall healing rate with a low complication rate. Taking the quality of evidence into account, more high-quality studies are required to evaluate the validity of the factors that may influence the treatment outcome of IR.
Asunto(s)
Periodontitis Periapical , Humanos , Estudios Prospectivos , Estudios Retrospectivos , Periodontitis Periapical/cirugía , Resultado del TratamientoRESUMEN
Mutations in one of the three RAS genes (HRAS, KRAS, and NRAS) are present in nearly 20% of all human cancers. These mutations shift RAS to the GTP-loaded active state due to impairment in the intrinsic GTPase activity and disruption of GAP-mediated GTP hydrolysis, resulting in constitutive activation of effectors such as RAF. Because activation of RAF involves dimerization, RAS dimerization has been proposed as an important step in RAS-mediated activation of effectors. The α4-α5 allosteric lobe of RAS has been proposed as a RAS dimerization interface. Indeed, the NS1 monobody, which binds the α4-α5 region within the RAS G domain, inhibits RAS-dependent signaling and transformation as well as RAS nanoclustering at the plasma membrane. Although these results are consistent with a model in which the G domain dimerizes through the α4-α5 region, the isolated G domain of RAS lacks intrinsic dimerization capacity. Furthermore, prior studies analyzing α4-α5 point mutations have reported mixed effects on RAS function. Here, we evaluated the activity of a panel of single amino acid substitutions in the α4-α5 region implicated in RAS dimerization. We found that these proposed "dimerization-disrupting" mutations do not significantly impair self-association, signaling, or transformation of oncogenic RAS. These results are consistent with a model in which activated RAS protomers cluster in close proximity to promote the dimerization of their associated effector proteins (e.g., RAF) without physically associating into dimers mediated by specific molecular interactions. Our findings suggest the need for a nonconventional approach to developing therapeutics targeting the α4-α5 region.
Asunto(s)
Genes ras , Transducción de Señal , Humanos , Unión Proteica , Transducción de Señal/genética , Mutación , Guanosina Trifosfato/genéticaRESUMEN
Background: This study investigates the prevalence of lower urinary tract symptoms (LUTS) in school-age children with Attention-Deficit/Hyperactivity Disorder (ADHD) based on hospital-based and population-based cohorts. Methods: The hospital-based sample comprised 42 children with ADHD and 65 without ADHD aged 6−12 years. Voiding dysfunction was assessed by the Dysfunctional Voiding Scoring System (DVSS) questionnaire. We compared the baseline data, DVSS score, and uroflowmetry between the two groups. For the population-based cohort in the national insurance database, we included 6526 children aged 6−12 years, whose claims record included the diagnosis of ADHD, and another 6526 control subjects matched by gender and age. We compared the presence of LUTS diagnosis codes between the two groups. Results: Our results showed that, for the hospital-based cohort, the mean total DVSS score and the proportion of significant LUTS in children in the ADHD group were significantly higher than in subjects in the non-ADHD group. The DVSS subscales showed that the item "I cannot wait when I have to pee" item was significantly higher in the ADHD group (1.62 ± 1.17 vs. 0.90 ± 1.09, p = 0.002). For the population-based cohort, children with ADHD had a significantly higher likelihood of storage symptoms (5.53% vs. 2.91%, p < 0.001) and enuresis (3.28% vs. 1.95%, p < 0.001) compared with those of the no ADHD group. Conclusions: Children with ADHD have a higher prevalence of significant LUTS, especially storage symptoms and enuresis, than children without ADHD. The observed correlations between ADHD and LUTS provided the supporting evidence to evaluate the concomitant voiding dysfunction in children with ADHD.
RESUMEN
RAS mutants are major therapeutic targets in oncology with few efficacious direct inhibitors available. The identification of a shallow pocket near the Switch II region on RAS has led to the development of small-molecule drugs that target this site and inhibit KRAS(G12C) and KRAS(G12D). To discover other regions on RAS that may be targeted for inhibition, we have employed small synthetic binding proteins termed monobodies that have a strong propensity to bind to functional sites on a target protein. Here, we report a pan-RAS monobody, termed JAM20, that bound to all RAS isoforms with nanomolar affinity and demonstrated limited nucleotide-state specificity. Upon intracellular expression, JAM20 potently inhibited signaling mediated by all RAS isoforms and reduced oncogenic RAS-mediated tumorigenesis in vivo. NMR and mutation analysis determined that JAM20 bound to a pocket between Switch I and II, which is similarly targeted by low-affinity, small-molecule inhibitors, such as BI-2852, whose in vivo efficacy has not been demonstrated. Furthermore, JAM20 directly competed with both the RAF(RBD) and BI-2852. These results provide direct validation of targeting the Switch I/II pocket for inhibiting RAS-driven tumorigenesis. More generally, these results demonstrate the utility of tool biologics as probes for discovering and validating druggable sites on challenging targets.
Asunto(s)
Productos Biológicos , Proteínas Proto-Oncogénicas p21(ras) , Carcinogénesis/genética , Genes ras , Humanos , Mutación , Nucleótidos , Proteínas Proto-Oncogénicas p21(ras)/genéticaRESUMEN
Helicobacter pylori infection is associated with the development of several gastric diseases including gastric cancer. To reach a long-term colonization in the host stomach, H. pylori employs multiple outer membrane adhesins for binding to the gastric mucosa. However, due to the redundancy of adhesins that complement the adhesive function of bacteria, targeting each individual adhesin alone usually achieves nonideal outcomes for preventing bacterial adhesion. Here, we report that key adhesins AlpA/B and BabA/B in H. pylori are modified by glycans and display a two-step molecular weight upshift pattern from the cytoplasm to the inner membrane and from the inner membrane to the outer membrane. Nevertheless, this upshift pattern is missing when the expression of some enzymes related to lipopolysaccharide (LPS) biosynthesis, including the LPS O-antigen assembly and ligation enzymes WecA, Wzk, and WaaL, is disrupted, indicating that the underlying mechanisms and the involved enzymes for the adhesin glycosylation are partially shared with the LPS biosynthesis. Loss of the adhesin glycosylation not only reduces the protease resistance and the stability of the tested adhesins but also changes the adhesin-binding ability. In addition, mutations in the LPS biosynthesis cause a significant reduction in bacterial adhesion in the in vitro cell-line model. The current findings reveal that H. pylori employs a general protein glycosylation system related to LPS biosynthesis for adhesin modification and its biological significance. The enzymes required for adhesin glycosylation rather than the adhesins themselves are potentially better drug targets for preventing or treating H. pylori infection.
Asunto(s)
Microbioma Gastrointestinal , Infecciones por Helicobacter , Helicobacter pylori , Adhesinas Bacterianas/genética , Adhesinas Bacterianas/metabolismo , Adhesión Bacteriana , Glicosilación , Infecciones por Helicobacter/microbiología , Helicobacter pylori/genética , Humanos , Lipopolisacáridos/metabolismo , Antígenos O/metabolismo , Péptido Hidrolasas/metabolismoRESUMEN
BACKGROUND: Cancer therapy has evolved from non-specific cytotoxic agents to a selective, mechanism-based approach that includes targeted agents and immunotherapy. Although the response to targeted therapies for unresectable hepatocellular carcinoma (HCC) is acceptable with the improved survival, the high tumor recurrence rate and drug-related side effects continue to be problematic. Given that immune checkpoint inhibitor alone are not robust enough to improve survival in unresectable HCC, growing evidence supports the combination of targeted therapy and immunotherapy with synergistic effect. METHODS: Online databases including PubMed, EMBASE, Cochrane Library, and Web of Science were searched for the studies that compared targeted monotherapy with the combination therapy of targeted drug and checkpoint inhibitors in unresectable HCC patients. Eligibility criteria were the presence of at least one measurable lesion as defined by the Response Evaluation Criteria in Solid Tumors (version 1.1) for unresectable HCC patients, an Eastern Cooperative Oncology Group performance status of 0-2, and a Child-Pugh score ≤ 7. Outcome measurements include overall survival (OS), progression-free survival (PFS), and treatment-related adverse event (TRAE). RESULTS: Three phase II/III randomized controlled trials were included in this study. The pooled results showed that combination therapy significantly improved survival than targeted monotherapy, in terms of OS (hazard ratio (HR) = 0.67; 95% confidence interval [CI]: 0.50-0.91) and PFS (HR = 0.58; 95% CI: 0.51-0.67), respectively. In the incidence of grade 3-5 TRAEs, the combination therapy was significantly higher than targeted monotherapy (odds ratio = 1.98; 95% CI: 1.13-3.48). CONCLUSION: For unresectable HCC, combined targeted drug and immunotherapy significantly improved survival compared with targeted monotherapy. However, the incidences of AEs of combinational therapy were higher than targeted monotherapy.
Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Inhibidores de Puntos de Control Inmunológico , Recurrencia Local de Neoplasia/tratamiento farmacológico , Inmunoterapia/efectos adversos , Inmunoterapia/métodos , Factores Inmunológicos/uso terapéutico , Citotoxinas , Ensayos Clínicos Controlados Aleatorios como Asunto , Ensayos Clínicos Fase II como AsuntoRESUMEN
A convenient route for the preparation of l-gulose and its C-6 derivatives starting from commercially available 2,3:5,6-diisopropylidene-d-mannofuranose via C-5 epimerization as the key step was developed. 1-O-Benzylation followed by regioselective hydrolysis of the 5,6-isopropylidene group furnished benzyl 2,3-isopropylidene-α-d-mannofuranoside, which was subjected upon regioselective one-pot 6-O-benzoylation and 5-O-mesylation, providing the corresponding 5-OMs-6-OBz derivative in excellent selectivity. Treatment of this mesylate compound with potassium t-butoxide to remove the benzoyl group followed by intramolecular SN2 inversion led to benzyl 5,6-anhydro-2,3-isopropylidene-ß-l-gulofuranoside, which could undergo not only nucleophilic substitutions to open the epoxide ring to give various C-6 derivatives, but also acidic hydrolysis to yield 1,6-anhydro-ß-l-gulopyranose for further transformation into l-gulopyranosyl pentaacetate.
Asunto(s)
Compuestos Epoxi , Mesilatos , Alquenos , Hexosas , PotasioRESUMEN
BACKGROUND: Circular RNAs (circRNAs) regulate various biological activities and have been shown to play crucial roles in hepatocellular carcinoma (HCC) progression. However, only a few coding circRNAs have been identified in cancers, and their roles in HCC remain elusive. This study aimed to identify coding circRNAs and explore their function in HCC. METHODS: CircMAP3K4 was selected from the CIRCpedia database. We performed a series of experiments to determine the characteristics and coding capacity of circMAP3K4. We then used in vivo and in vitro assays to investigate the biological function and mechanism of circMAP3K4 and its protein product, circMAP3K4-455aa, in HCC. RESULTS: We found circMAP3K4 to be an upregulated circRNA with coding potential in HCC. IGF2BP1 recognized the circMAP3K4 N6-methyladenosine modification and promoted its translation into circMAP3K4-455aa. Functionally, circMAP3K4-455aa prevented cisplatin-induced apoptosis in HCC cells by interacting with AIF, thus protecting AIF from cleavage and decreasing its nuclear distribution. Moreover, circMAP3K4-455aa was degraded through the ubiquitin-proteasome E3 ligase MIB1 pathway. Clinically, a high level of circMAP3K4 is an independent prognostic factor for adverse overall survival and adverse disease-free survival of HCC patients. CONCLUSIONS: CircMAP3K4 is a highly expressed circRNA in HCC. Driven by m6A modification, circMAP3K4 encoded circMAP3K4-455aa, protected HCC cells from cisplatin exposure, and predicted worse prognosis of HCC patients. Targeting circMAP3K4-455aa may provide a new therapeutic strategy for HCC patients, especially for those with chemoresistance. CircMAP3K4 is a highly expressed circRNA in HCC. Driven by m6A modification, IGF2BP1 facilitates circMAP3K4 peptide translation, then the circMAP3K4 peptide inhibits AIF cleavage and nuclear distribution, preventing HCC cells from cell death under stress and promoting HCC progression.
Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Adenosina/análogos & derivados , Apoptosis , Carcinoma Hepatocelular/patología , Humanos , Neoplasias Hepáticas/patología , PéptidosRESUMEN
Molecular display technologies have enabled the generation of synthetic binders with high affinities against a variety of antigens. However, engineering binders with high selectivity is still a challenging task. Here, we illustrate points to consider in developing highly selective binders against antigens of interest. We describe a systematic strategy for sorting selective binders using the yeast display technology. Using the approach described, our group has overcome molecular recognition challenges and developed a series of synthetic binders with exceptional selectivity against diverse antigens.
Asunto(s)
Biblioteca de Péptidos , Ingeniería de Proteínas , Antígenos , Saccharomyces cerevisiae/genéticaRESUMEN
The root phenotypic traits have been considered as important factors in shaping the rhizosphere microbiome and regulating plant growth. However, the relationships between root phenotypic traits and the rhizosphere bacterial community remain unclear. We investigated two fields with different developing tobacco roots by a long-term positioning test in Hengshi. The well-developed root system (WDR) showed much more superiority in root phenotypic traits, including total root length, total projection area, surface area, and root tip number, than the underdeveloped root system. The specific root traits in WDR provided more ecological niches for the rhizosphere microorganisms, contributing to a more diverse microbial community and a more complex microbial network. The total root length and root tip number were the key factors shaping bacterial communities in the rhizosphere. In turn, the phyla Acidobacteria and Bacteroidetes might play vital roles in modifying root development and promoting plant growth according to their positive correlation with root phenotypic traits. Linking root phenotypic traits to the microbiome may enhance our understanding of rhizospheric interactions and their roles in developing rhizosphere ecosystems.