RESUMEN
Understanding the mechanisms underlying the radiation-induced bystander effect (RIBE) and bi-directional signaling between irradiated carcinoma cells and their surrounding non-irradiated normal cells is relevant to cancer radiotherapy. The present study investigated propagation of RIBE signals between human lung carcinoma A549 cells and normal lung fibroblast WI38 cells in bystander cells, either directly or indirectly contacting irradiated A549 cells. We prepared A549-GFP/WI38 co-cultures and A549-GFP/A549 co-cultures, in which A549-GFP cells stably expressing H2BGFP were co-cultured with either A549 cells or WI38 cells, respectively. Using the SPICE-NIRS microbeam, only the A549-GFP cells were irradiated with 500 protons per cell. The level of γ-H2AX, a marker for DNA double-strand breaks (DSB), was subsequently measured for up to 24h post-irradiation in three categories of cells: (1) "targeted"/irradiated A549-GFP cells; (2) "neighboring"/non-irradiated cells directly contacting the "targeted" cells; and (3) "distant"/non-irradiated cells, which were not in direct contact with the "targeted" cells. We found that DSB repair in targeted A549-GFP cells was enhanced by co-cultured WI38 cells. The bystander response in A549-GFP/A549 cell co-cultures, as marked by γ-H2AX levels at 8h post-irradiation, showed a decrease to non-irradiated control level when approaching 24h, while the neighboring/distant bystander WI38 cells in A549-GFP/WI38 co-cultures was maintained at a similar level until 24h post-irradiation. Surprisingly, distant A549-GFP cells in A549-GFP/WI38 co-cultures showed time dependency similar to bystander WI38 cells, but not to distant cells in A549-GFP/A549 co-cultures. These observations indicate that γ-H2AX was induced in WI38 cells as a result of RIBE. WI38 cells were not only involved in rescue of targeted A549, but also in the modification of RIBE against distant A549-GFP cells. The present results demonstrate that radiation-induced bi-directional signaling had extended a profound influence on cellular sensitivity to radiation as well as the sensitivity to RIBE.
Asunto(s)
Efecto Espectador/efectos de la radiación , Roturas del ADN de Doble Cadena , Reparación del ADN , Fibroblastos/efectos de la radiación , Transducción de Señal , Células A549 , Línea Celular , Técnicas de Cocultivo , Histonas/metabolismo , Humanos , Neoplasias Pulmonares/radioterapia , ProtonesRESUMEN
BACKGROUND: The interaction between ionizing radiation and substances in cells will induce the production of free radicals. These free radicals inflict damage to important biomolecules such as chromosomes, proteins and lipids which consequently trigger the expression of genes which are involved in protecting the cells or repair the oxidative damages. Honey has been known for its antioxidant properties and was used in medical and cosmetic products. Currently, research on honey is ongoing and diversifying. The aim of this study was to elucidate the role of Gelam honey as a radioprotector in human diploid fibroblast (HDFs) which were exposed to gamma-rays by determining the expression of genes and proteins involved in cell cycle regulation and cell death. METHODS: Six groups of HDFs were studied viz. untreated control, irradiated HDFs, Gelam honey-treated HDFs and HDF treated with Gelam honey pre-, during- and post-irradiation. HDFs were treated with 6 mg/ml of sterilized Gelam honey (w/v) for 24 h and exposed to 1 Gray (Gy) of gamma-rays at the dose rate of 0.25 Gy/min. RESULTS: Our findings showed that, gamma-irradiation at 1 Gy up-regulated ATM, p53, p16ink4a and cyclin D1 genes and subsequently initiated cell cycle arrest at G0/G1 phase and induced apoptosis (p < 0.05). Pre-treatment with Gelam honey however caused down regulation of these genes in irradiated HDFs while no significant changes was observed on the expression of GADD45 and PAK genes. The expression of ATM and p16 proteins was increased in irradiated HDFs but the p53 gene was translated into p73 protein which was also increased in irradiated HDFs. Gelam honey treatment however significantly decreased the expression of ATM, p73, and p16 proteins (p < 0.05) while the expression of cyclin D1 remained unchanged. Analysis on cell cycle profile showed that cells progressed to S phase with less percentage of cells in G0/G1 phase with Gelam honey treatment while apoptosis was inhibited. CONCLUSION: Gelam honey acts a radioprotector against gamma-irradiation by attenuating radiation-induced cell death.