Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Plants (Basel) ; 13(8)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38674461

RESUMEN

Aquatic weeds, including invasive species, are a worldwide problem. The presence of aquatic weeds poses several critical issues, such as hindering the continuous flow of water in irrigation channels and preventing the proper distribution of adequate water quantities. Therefore, effective control measures are vital for agriculture and numerous downstream industries. Numerous methods for controlling aquatic weeds have emerged over time, with herbicide application being a widely used established method of weed management, although it imposes significant environmental risks. Therefore, it is important to explore nonchemical alternative methods to control existing and emerging aquatic weeds, potentially posing fewer environmental hazards compared with conventional chemical methods. In this review, we focus on nonchemical methods, encompassing mechanical, physical, biological, and other alternative approaches. We primarily evaluated the different nonchemical control methods discussed in this review based on two main criteria: (1) efficiency in alleviating aquatic weed problems in location-specified scenarios and (2) impacts on the environment, as well as potential health and safety risks. We compared the nonchemical treatments with the UV-C-radiation-mediated aquatic weed control method, which is considered a potential novel technique. Since there is limited published literature available on the application of UV-C radiation used exclusively for aquatic weed control, our review is based on previous reports of UV-C radiation used to successfully control terrestrial weeds and algal populations. In order to compare the mechanisms involved with nonchemical weed control methods, we reviewed respective pathways leading to plant cell death, plant growth inhibition, and diminishing reemergence to justify the potential use of UV-C treatment in aquatic habitats as a viable novel source for aquatic weed control.

2.
Plants (Basel) ; 11(17)2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-36079623

RESUMEN

The intrusion of weeds into fertile areas has resulted in significant global economic and environmental impacts on agricultural production systems and native ecosystems, hence without ongoing and repeated management actions, the maintenance or restoration of these systems will become increasingly challenging. The establishment of herbicide resistance in many species and unwanted pollution caused by synthetic herbicides has ushered in the need for alternative, eco-friendly sustainable management strategies, such as the use of bioherbicides. Of the array of bioherbicides currently available, the most successful products appear to be sourced from fungi (mycoherbicides), with at least 16 products being developed for commercial use globally. Over the last few decades, bioherbicides sourced from bacteria and plant extracts (such as allelochemicals and essential oils), together with viruses, have also shown marked success in controlling various weeds. Despite this encouraging trend, ongoing research is still required for these compounds to be economically viable and successful in the long term. It is apparent that more focused research is required for (i) the improvement of the commercialisation processes, including the cost-effectiveness and scale of production of these materials; (ii) the discovery of new production sources, such as bacteria, fungi, plants or viruses and (iii) the understanding of the environmental influence on the efficacy of these compounds, such as atmospheric CO2, humidity, soil water stress, temperature and UV radiation.

3.
Front Plant Sci ; 13: 864110, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35734256

RESUMEN

Cassytha, also known as laurel dodder or love vine, is a stem hemiparasite of the Lauraceae family. It has long been used for medicinal purposes in many countries and has increasingly influenced agricultural and natural ecosystems by its effects on a wide range of host species. Previous studies have focused on the taxonomy and evolutionary position of different Cassytha, with the pan-tropical species Cassytha filiformis being the most widely studied. However, Cassytha-host interactions have never been reviewed, which is an essential issue related to the understanding of mechanisms underlying plant hemiparasitic and the assessment of benefits and damage caused by aerial parasitic plants. This review explores the parasitic habits, worldwide distribution, and host range of Cassytha, and examines its impacts on the biology of host plants and the overall influence of environmental changes on Cassytha-host associations. We also comment on areas of future research directions that require to better understanding Cassytha-host interactions. It appeared that some traits, such as flowering phenology, facilitated Cassytha's widespread distribution and successful parasitism and that Cassytha preferred woody species rather than herbaceous species as a host, and preferred species from certain families as hosts, such as Fabaceae and Myrtaceae. Cassytha often decreased biomass and impacted the physiology of host species and global environmental changes seemed to intensify the negative impacts of Cassytha on their hosts. Cassytha was not only a noxious weed, but can also function as a biocontrol agent to mitigate alien plant invasion.

4.
Molecules ; 21(8)2016 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-27548121

RESUMEN

The mistletoes, stem hemiparasites of Asia and Europe, have been used as medicinal herbs for many years and possess sophisticated systems to obtain nutrients from their host plants. Although knowledge about ethnomedicinal uses of mistletoes is prevalent in Asia, systematic scientific study of these plants is still lacking, unlike its European counterparts. This review aims to evaluate the literature on Scurrula and Viscum mistletoes. Both mistletoes were found to have anticancer, antimicrobial, antioxidant and antihypertensive properties. Plants from the genus Scurrula were found to inhibit cancer growth due to presence of phytoconstituents such as quercetin and fatty acid chains. Similar to plants from the genus Viscum, Scurrula also possesses TNFα activity to strengthen the immune system to combat cancer. In line with its anticancer activity, both mistletoes are rich in antioxidants that confer protection against cancer as well as neurodegeneration. Extracts from plants of both genera showed evidence of vasodilation and thus, antihypertensive effects. Other therapeutic effects such as weight loss, postpartum and gastrointestinal healing from different plants of the genus Scurrula are documented. As the therapeutic effects of plants from Scurrula are still in exploration stage, there is currently no known clinical trial on these plants. However, there are few on-going clinical trials for Viscum album that demonstrate the functionalities of these mistletoes. Future work required for exploring the benefits of these plants and ways to develop both parasitic plants as a source of pharmacological drug are explained in this article.


Asunto(s)
Muérdago/fisiología , Extractos Vegetales/farmacología , Plantas Medicinales/fisiología , Animales , Antiinfecciosos/química , Antiinfecciosos/farmacología , Antihipertensivos/química , Antihipertensivos/farmacología , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacología , Antioxidantes/química , Antioxidantes/farmacología , China , Etnofarmacología , Europa (Continente) , Humanos , Muérdago/química , Extractos Vegetales/química , Plantas Medicinales/química
5.
J Biophys ; 2014: 739514, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24707286

RESUMEN

Natural dyes have become a viable alternative to expensive organic sensitizers because of their low cost of production, abundance in supply, and eco-friendliness. We evaluated 35 native plants containing anthocyanin pigments as potential sensitizers for DSSCs. Melastoma malabathricum (fruit pulp), Hibiscus rosa-sinensis (flower), and Codiaeum variegatum (leaves) showed the highest absorption peaks. Hence, these were used to determine anthocyanin content and stability based on the impacts of storage temperature. Melastoma malabathricum fruit pulp exhibited the highest anthocyanin content (8.43 mg/L) followed by H. rosa-sinensis and C. variegatum. Significantly greater stability of extracted anthocyanin pigment was shown when all three were stored at 4°C. The highest half-life periods for anthocyanin in M. malabathricum, H. rosa-sinensis, and C. variegatum were 541, 571, and 353 days at 4°C. These were rapidly decreased to 111, 220, and 254 days when stored at 25°C. The photovoltaic efficiency of M. malabathricum was1.16%, while the values for H. rosa-sinensis and C. variegatum were 0.16% and 1.08%, respectively. Hence, M. malabathricum fruit pulp extracts can be further evaluated as an alternative natural sensitizer for DSSCs.

6.
Funct Plant Biol ; 38(6): 505-513, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32480904

RESUMEN

Our understanding of mineral nutrition and carbon heterotrophy in mistletoes is derived largely from arid and temperate plant communities. Sharp differences between the tropical, temperate and arid communities, such as seasonality, water availability and mean temperature may influence basic assumptions regarding mistletoe physiology. Thus, we present mineral nutrition profiles and natural abundance carbon and nitrogen stable isotope data for tropical mistletoes and their hosts. Parasite-host mineral nutrition profiles were estimated for three Loranthaceous mistletoes: Scurrula ferruginea Danser, Macrosolen cochinchinensis Blume, and Dendrophthoe curvata Blume and 12 unique mistletoe-host associations. δ13C and δ15N values were estimated for 12 parasite-host associations. Differences between host and parasite δ13C values were small but showed significant depletion in mistletoe leaves compared with the distal branch and proximal branch host leaves. Host and mistletoe δ13C values were uncorrelated whereas δ15N values were significantly correlated, demonstrating mistletoe N dependence. Concentrations of K were higher in mistletoes relative to hosts and significantly higher for Dendrophthoe host associations. For Scurrula and Macrosolen, mean mistletoe-host concentrations of major and minor elements did not differ significantly.

7.
Am J Bot ; 94(9): 1439-49, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21636511

RESUMEN

The morphology of the hypogeous root holoparasite Hydnora triceps is highly reduced, and as with many holoparasites, the vegetative body is difficult to interpret. The vegetative body of H. triceps has been historically considered a "pilot root" studded with lateral appendages known as "haustorial roots." We found the vegetative body of H. triceps to consist of a rhizome with a thickened root-cap-like structure that covered a vegetative shoot apical meristem. From the apical meristem, procambial strands originated and developed into endarch collateral vascular bundles arranged radially around a pith without an interfascicular cambium. Xylem vessels had scalariform pitting and simple perforation plates. A continuous periderm without root hairs was observed. Increase in girth was attributed to cork and fascicular cambia. "Haustorial roots" or bumps on the surface of the vegetative body were exogenous, contained meristems and were the origins of vegetative branching, budding, and haustoria. The haustoria of H. triceps were cylindrical and penetrated the host root stele. Phloem and xylem elements were observed within the endophyte, and direct xylem to host-xylem contacts were observed. The arrangement of vascular tissues and xylem anatomy of H. triceps are likely plesiomorphic features in light of Hydnoraceae's placement in the Piperales.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA