Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Infect Dis ; 136: 151-157, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37758170

RESUMEN

BACKGROUND: Early in the COVID-19 pandemic, there was a global shortage of masks. Although mask reprocessing was practiced, no clinical study has assessed systematically the impact of repeated cycles of wear and decontamination on the integrity of N95 filtering facepiece respirators (FFRs). METHODS: We evaluated mask fit assessed by qualitative respirator fit test (QRFT) after each cycle of wear and decontamination, as well as four measures of mask integrity-bacterial filtration efficacy, particle filtration efficacy, differential pressure, and splash resistance through five cycles of wear and decontamination using one of the four modalities (moist heat, steam, ultraviolet-C irradiation, and hydrogen peroxide plasma). RESULTS: A total of 60.6% (hydrogen peroxide plasma) to 77.5% (moist heat) of the FFRs passed five cycles of wear and decontamination, as assessed by the wearers passing QRFT all five times. Moist heat-decontaminated FFRs retained all technical measures of integrity through all five cycles. CONCLUSIONS: This is the first large-scale study to assess systematically the impact (clinically and quantitatively) on N95 FFR integrity of repeated cycles of wearing followed by decontamination. Our results suggest that moist heat is a promising method for decontaminating N95 FFRs. Performing QRFT after every cycle of wear and decontamination ensures wearer safety. Although there is currently no mask shortage, reprocessing may reduce medical waste and improve sustainability.


Asunto(s)
Respiradores N95 , Dispositivos de Protección Respiratoria , Humanos , Vapor , Peróxido de Hidrógeno , Calor , Descontaminación/métodos , Pandemias/prevención & control , Equipo Reutilizado , Máscaras
2.
Adv Healthc Mater ; 11(6): e2101770, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34846807

RESUMEN

Multidrug resistant infections are plaguing the healthcare sector over the past few decades with limited treatment options. To overcome this problem, the authors synthesize a series of novel guanidinium-functionalized polypeptides. Specifically, poly(l-lysine) (PLL) with different lengths is first synthesized by ring-opening polymerization of Nε -benzyloxycarbonyl-l-lysine-N-carboxyanhydride (Lys(Z)-NCA) followed by functionalization with a guanidinium-functional group to obtain guanidinium-functionalized PLL (PLL-Gua). To study the effect of hydrophobicity on antimicrobial activity, relatively more hydrophobic leucine-NCA monomer or hydrophobic vitamin E moiety is introduced to PLL-Gua. These polypeptides are characterized for antimicrobial activity against a panel of microbes including multidrug-resistant bacteria, and hemolytic activity. Among all the polypeptides, PLL22 -Gua is most effective against bacteria and yeast. Particularly, excellent bactericidal activity is observed against Staphylococcus aureus and MRSA. PLL22 -Gua kills bacteria mainly by membrane translocation. In addition, PLL22 -Gua kills MRSA with low resistance frequency (<3.3 × 10-8 ). In an MRSA-caused wound infection mouse model, two-day treatment (twice daily) with 10, 20, or 40 mg per kg of PLL22 -Gua shows up to 99.5% bacterial removal. Moreover, no acute dermal toxicity is observed even at a dose of 200 mg per kg. These promising results show the excellent potential of PLL22 -Gua as an antimicrobial agent against multidrug-resistant infection in vivo.


Asunto(s)
Antiinfecciosos , Staphylococcus aureus Resistente a Meticilina , Infección de Heridas , Animales , Antibacterianos/química , Antiinfecciosos/farmacología , Ratones , Pruebas de Sensibilidad Microbiana , Péptidos/farmacología , Infección de Heridas/tratamiento farmacológico
3.
Glob Chall ; 5(11): 2100030, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34754506

RESUMEN

To curb the spread of the COVID-19 virus, the use of face masks such as disposable surgical masks and N95 respirators is being encouraged and even enforced in some countries. The widespread use of masks has resulted in global shortages and individuals are reusing them. This calls for proper disinfection of the masks while retaining their protective capability. In this study, the killing efficiency of ultraviolet-C (UV-C) irradiation, dry heat, and steam sterilization against bacteria (Staphylococcus aureus), fungi (Candida albicans), and nonpathogenic virus (Salmonella virus P22) is investigated. UV-C irradiation for 10 min in a commercial UV sterilizer effectively disinfects surgical masks. N95 respirators require dry heat at 100 °C for hours while steam treatment works within 5 min. To address the question on safe reuse of the disinfected masks, their bacteria filtration efficiency, particle filtration efficiency, breathability, and fluid resistance are assessed. These performance factors are unaffected after 5 cycles of steam (10 min per cycle) and 10 cycles of dry heat at 100 °C (40 min per cycle) for N95 respirators, and 10 cycles of UV-C irradiation for surgical masks (10 min per side per cycle). These findings provide insights into formulating the standard procedures for reusing masks without compromising their protective ability.

5.
ACS Appl Mater Interfaces ; 13(15): 17276-17288, 2021 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-33830733

RESUMEN

Mesenchymal stromal cells (MSCs) secreting multiple growth factors and immunomodulatory cytokines are promising for regenerative medicine. To further enhance their secretory activity, efforts have emerged to tether nanosized carriers of secretory stimuli, named nanostimulators, to the MSC surface by forming nonchemical bonds. Despite some successes, there is a great need to improve the retention of nanostimulators during transport through a syringe needle, where high shear stress exerted on the cell surface separates them. To this end, we hypothesize that poly(lactic-co-glycolic acid)-block-hyaluronic acid (PLGA-HA) conjugated with integrin-binding RGD peptides, denoted PLGA-HA-RGD, can form nanostimulators that remain on the cell surface stably during the injection. The resulting HA-CD44 and RGD-integrin bonds would synergistically increase the adhesion strength of nanostimulators. Interestingly, nanostimulators prepared with PLGA-HA-RGD show 3- to 6-fold higher retention than those made with PLGA-HA. Therefore, the PLGA-HA-RGD nanostimulators induced MSCs to secrete 1.5-fold higher vascular endothelial growth factors and a 1.2-fold higher tissue inhibitor of matrix metalloproteinase-1 as compared to PLGA-HA nanostimulators. Consequently, MSCs tethered with PLGA-HA-RGD nanostimulators served to stimulate endothelial cell activities to form a blood vessel-like endothelial lumen with increased length and number of junctions. The nanostimulator design strategy would also be broadly applicable to regulate, protect, and home a broad array of therapeutic or immune cells by tethering carriers with bioactive molecules of interest.


Asunto(s)
Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Nanotecnología/métodos , Comunicación Paracrina/efectos de los fármacos , Resistencia al Corte , Células Endoteliales/citología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Receptores de Hialuranos/química , Ácido Hialurónico/química , Inyecciones , Oligopéptidos/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Estrés Mecánico
6.
Nanomedicine ; 28: 102215, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32438106

RESUMEN

Mesenchymal stem cells are promising medicine for treating diseases and tissue defects because of their innate ability to secrete therapeutic factors. Intravenous delivery of stem cells, although favored for its minimal invasiveness, is often plagued by low cellular engraftment in the target tissue. To this end, this study hypothesizes that in situ activation of cellular expression of CXC chemokine 4 (CXCR4) would significantly improve cellular migration to injured tissue. This hypothesis was examined by tethering the surface of stem cells with poly(D,L-lactide-co-glycolide)-block-hyaluronic acid (HA) particles containing stromal cell-derived factor-1α, a model chemokine to sensitize CXCR4. The HA blocks in the particles enhanced the association rate constant to stem cells by 3.3-fold, and in turn, increased the number of cells expressing CXCR4 receptors. Consequently, these cells displayed 1.2-fold higher transendothelial migration in vitro and 1.7-fold greater trafficking to the ischemic hindlimb of a mouse than that of the untethered cells.


Asunto(s)
Isquemia/metabolismo , Receptores CXCR4/metabolismo , Células Madre/citología , Animales , Quimiocina CXCL12/metabolismo , Miembro Posterior/metabolismo , Cinética , Espectroscopía de Resonancia Magnética , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Ratones , Células Madre/metabolismo
7.
ACS Nano ; 14(5): 5298-5313, 2020 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-32243129

RESUMEN

Stem cell transplantation has been a promising treatment for peripheral arterial diseases in the past decade. Stem cells act as living bioreactors of paracrine factors that orchestrate tissue regeneration. Prestimulated adipose-derived stem cells (ADSCs) have been proposed as potential candidates but have been met with challenges in activating their secretory activities for clinical use. Here, we propose that tethering the ADSC surface with nanoparticles releasing tumor necrosis factor α (TNFα), named nanostimulator, would stimulate cellular secretory activity in situ. We examined this hypothesis by complexing octadecylamine-grafted hyaluronic acid onto a liposomal carrier of TNFα. Hyaluronic acid increased the liposomal stability and association to CD44 on ADSC surface. ADSCs tethered with these TNFα carriers exhibited up-regulated secretion of proangiogenic vascular endothelial growth factor and immunomodulatory prosteoglandin E2 (PGE2) while decreasing secretion of antiangiogenic pigment epithelium-derived factors. Accordingly, ADSCs tethered with nanostimulators promoted vascularization in a 3D microvascular chip and enhanced recovery of perfusion, walking, and muscle mass in a murine ischemic hindlimb compared to untreated ADSCs. We propose that this surface tethering strategy for in situ stimulation of stem cells would replace the costly and cumbersome preconditioning process and expedite clinical use of stem cells for improved treatments of various injuries and diseases.


Asunto(s)
Células Madre , Factor A de Crecimiento Endotelial Vascular , Tejido Adiposo , Animales , Células Cultivadas , Inflamación , Ratones , Músculos , Trasplante de Células Madre
8.
Biomaterials ; 201: 1-15, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30784768

RESUMEN

Mesenchymal stem cells are the new generation of medicine for treating numerous vascular diseases and tissue defects because of their ability to secrete therapeutic factors. Poor cellular survival in an oxidative diseased tissue, however, hinders the therapeutic efficacy. To this end, we hypothesized that tethering the surface of stem cells with colloidal particles capable of discharging antioxidant cargos in response to elevated levels of hydrogen peroxide (H2O2) would maintain survival and therapeutic activity of the stem cells. We examined this hypothesis by encapsulating epigallocatechin gallate (EGCG) and manganese oxide (MnO2) nanocatalysts into particles comprising poly(d,l-lactide-co-glycolide)-block-hyaluronic acid. The MnO2 nanocatalysts catalyzed the decomposition of H2O2 into oxygen gas, which increased the internal pressure of particles and accelerated the release of EGCG by 1.5-fold. Consequently, stem cells exhibited 1.2-fold higher metabolic activity and 2.8-fold higher secretion level of pro-angiogenic factor in sub-lethal H2O2 concentrations. These stem cells, in turn, performed a greater angiogenic potential with doubled number of newly formed mature blood vessels. We envisage that the results of this study will contribute to improving the therapeutic efficacy of a wide array of stem cells.


Asunto(s)
Coloides/química , Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/farmacología , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Animales , Catequina/análogos & derivados , Catequina/química , Embrión de Pollo , Membrana Corioalantoides/efectos de los fármacos , Membrana Corioalantoides/metabolismo , Glutatión Peroxidasa/metabolismo , Humanos , Compuestos de Manganeso/química , Células Madre Mesenquimatosas/efectos de los fármacos , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Óxidos/química , Especies Reactivas de Oxígeno/metabolismo
9.
Biomaterials ; 199: 76-87, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30771551

RESUMEN

Although mortality continues to decline over the past two decades, cancer is still a pervasive healthcare problem worldwide due to the increase in the number of cases, multidrug resistance (MDR) and metastasis. As a consequence of multidrug resistance, cancer treatment must rely on a host of chemotherapeutic agents and chemosensitizers to achieve remission. To overcome these problems, a series of biodegradable triblock copolymers of PEG, guanidinium-functionalized polycarbonate and polylactide (PEG-PGCx-PDLAy) is designed as chemotherapeutic agents. These copolymers self-assemble into micellar nanoparticles, and are highly effective against various cancer cell lines including human breast cancer (BCap37), liver cancer (HepG2), lung cancer (A549) and epidermoid carcinoma (A431) cell lines as well as MDR Bats-72 and Bads-200 cancer cells that were developed from BCap37. Multiple treatments with the polymers at sub-lethal doses do not induce resistance. The polymers kill cancer cells by a non-apoptotic mechanism with significant vacuolization and subsequent membrane disruption. In vivo antitumor efficacy is evaluated in a metastatic 4T1 subcutaneous tumor model. Treatment with stereocomplexes of PEG-PGC43-PLLA19 and PEG-PGC43-PDLA20 at a dose of 20 mg/kg of mouse body weight suppresses tumor growth and inhibits tumor metastasis in vivo. These polymers show promise in the treatment of cancer without the onset of resistance.


Asunto(s)
Antineoplásicos/farmacología , Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Neoplasias/patología , Polímeros/química , Animales , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Tamaño de la Célula/efectos de los fármacos , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Humanos , Concentración 50 Inhibidora , Ratones Endogámicos BALB C , Ratones Endogámicos ICR , Metástasis de la Neoplasia , Neoplasias/tratamiento farmacológico , Neoplasias/ultraestructura , Prohibitinas , Distribución Tisular/efectos de los fármacos
10.
Adv Healthc Mater ; 7(8): e1701276, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29334183

RESUMEN

Engineered polymer vesicles, termed as polymersomes, confer a flexibility to control their structure, properties, and functionality. Self-assembly of amphiphilic copolymers leads to vesicles consisting of a hydrophobic bilayer membrane and hydrophilic core, each of which is loaded with a wide array of small and large molecules of interests. As such, polymersomes are increasingly being studied as carriers of imaging probes and therapeutic drugs. Effective delivery of polymersomes necessitates careful design of polymersomes. Therefore, this review article discusses the design strategies of polymersomes developed for enhanced transport and efficacy of imaging probes and therapeutic drugs. In particular, the article focuses on overviewing technologies to regulate the size, structure, shape, surface activity, and stimuli- responsiveness of polymersomes and discussing the extent to which these properties and structure of polymersomes influence the efficacy of cargo molecules. Taken together with future considerations, this article will serve to improve the controllability of polymersome functions and accelerate the use of polymersomes in biomedical applications.


Asunto(s)
Portadores de Fármacos , Nanopartículas , Patología Molecular/métodos , Polímeros , Animales , Portadores de Fármacos/química , Portadores de Fármacos/uso terapéutico , Humanos , Nanopartículas/química , Nanopartículas/uso terapéutico , Tamaño de la Partícula , Polímeros/química , Polímeros/uso terapéutico
11.
ACS Appl Mater Interfaces ; 9(41): 35642-35650, 2017 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-28961399

RESUMEN

Overproduced reactive oxygen species (ROS) are closely related to various health problems including inflammation, infection, and cancer. Abnormally high ROS levels can cause serious oxidative damage to biomolecules, cells, and tissues. A series of nano- or microsized particles has been developed to reduce the oxidative stress level by delivering antioxidant drugs. However, most systems are often plagued by slow molecular discharge, driven by diffusion. Herein, this study demonstrates the polymeric particles whose internal pressure can increase upon exposure to H2O2, one of the ROS, and in turn, discharge antioxidants actively. The on-demand pressurized particles are assembled by simultaneously encapsulating water-dispersible manganese oxide (MnO2) nanosheets and green tea derived epigallocatechin gallate (EGCG) molecules into a poly(lactic-co-glycolic acid) (PLGA) spherical shell. In the presence of H2O2, the MnO2 nanosheets in the PLGA particle generate oxygen gas by decomposing H2O2 and increase the internal pressure. The pressurized PLGA particles release antioxidative EGCG actively and, in turn, protect vascular and brain tissues from oxidative damage more effectively than the particles without MnO2 nanosheets. This H2O2 responsive, self-pressurizing particle system would be useful to deliver a wide array of molecular cargos in response to the oxidation level.

12.
Biomaterials ; 127: 36-48, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28279920

RESUMEN

Effective antimicrobial agents are important arsenals in our perennial fight against communicable diseases, hospital-acquired and surgical site multidrug-resistant infections. In this study, we devise a strategy for the development of highly efficacious and skin compatible yet inexpensive water-soluble macromolecular antimicrobial polyionenes by employing a catalyst-free, polyaddition polymerization using commercially available monomers. A series of antimicrobial polyionenes are prepared through a simple polyaddition reaction with both polymer-forming reaction and charge installation occurring simultaneously. The compositions and structures of polymers are modulated to study their effects on antimicrobial activity against a broad spectrum of pathogenic microbes. Polymers with optimized compositions have potent antimicrobial activity with low minimum inhibitory concentrations of 1.95-7.8 µg/mL and high selectivity over mammalian cells. In particular, a killing efficiency of more than 99.9% within 2 min is obtained. Moreover, the polymers demonstrate high antimicrobial efficacy against various clinically-isolated multidrug-resistant microbes, yet exhibit vastly superior skin biocompatibility in mice as compared to other clinically used surgical scrubs (chlorhexidine and betadine). Microbicidal activity of the polymer is mediated via membrane lysis as demonstrated by confocal microscopy. Unlike small molecular antibiotics, repeated use of the polymer does not induce drug resistance. More importantly, the polymer shows excellent bactericidal activity in a P. aeruginosa-contaminated mouse skin model. Given their rapid and efficacious microbicidal activity and skin compatibility, these polymers have tremendous potential to be developed as surgical scrubs/hand sanitizers to prevent multidrug-resistant infections.


Asunto(s)
Antiinfecciosos/farmacología , Viabilidad Microbiana/efectos de los fármacos , Polímeros/farmacología , Piel/microbiología , Animales , Bacterias/efectos de los fármacos , Materiales Biocompatibles/farmacología , Cromatografía en Gel , Recuento de Colonia Microbiana , Femenino , Hongos/efectos de los fármacos , Hemólisis/efectos de los fármacos , Cinética , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Pruebas de Sensibilidad Microbiana , Peso Molecular , Ratas Wistar , Piel/efectos de los fármacos
13.
Nanomedicine ; 13(2): 431-442, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27720991

RESUMEN

Diblock copolymers of poly(ethylene glycol) (PEG) and biodegradable polycarbonate functionalized with GSH-sensitive disulfide bonds and pH-responsive carboxylic acid groups were synthesized via organocatalytic ring-opening polymerization of functional cyclic carbonates with PEG having different molecular weights as macroinitiators. These narrowly-dispersed polymers had predictable molecular weights, and were used to load doxorubicin (DOX) into micelles primarily through ionic interactions. The DOX-loaded micelles exhibited the requisite small particle size (<100 nm), narrow size distribution and high drug loading capacity. When exposed to endolysosomal pH of 5.0, drug release was accelerated by at least two-fold. The introduction of GSH further expedited DOX release. Effective DOX release enhanced cytotoxicity against cancer cells. More importantly, the DOX-loaded micelles with the optimized composition showed excellent antitumor efficacy in nude mice bearing BT-474 xenografts without inducing toxicity. These pH and redox dual-responsive micelles have the potential as delivery carriers to maximize the therapeutic effect of anticancer drugs.


Asunto(s)
Micelas , Polietilenglicoles , Polímeros , Implantes Absorbibles , Animales , Supervivencia Celular , Doxorrubicina , Portadores de Fármacos , Humanos , Concentración de Iones de Hidrógeno , Ratones , Ratones Desnudos , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...