RESUMEN
Changes in cell fluidity have been observed in various cellular tissues and are strongly linked to biological phenomena such as self-organization. Recent studies suggested variety of mechanisms and factors, which are still being investigated. This study aimed to investigate changes in cell fluidity in multi-layered cell sheets, by exploring the collective arrest of cell motion and its release in cultures of corneal epithelial cells. We constructed mathematical models to simulate the behaviors of individual cells, including cell differentiation and time-dependent changes in cell-cell connections, which are defined by stochastic or kinetic rules. Changes in cell fluidity and cell sheet structures were expressed by simulating autonomous cell behaviors and interactions in tissues using an agent-based model. A single-cell level spatiotemporal analysis of cell state transition between migratable and non-migratable states revealed that the release from collective arrest of cell motion was initially triggered by a decreased ability to form cell-cell connections in the suprabasal layers, and was propagated by chain migration. Notably, the disruption of cell-cell connections and stratification occurred in the region of migratable state cells. Hence, a modeling approach that considers time-dependent changes in cell properties and behavior, and spatiotemporal analysis at the single-cell level can effectively delineate emergent phenomena arising from the complex interplay of cells.
Asunto(s)
Células Epiteliales , Modelos Biológicos , Movimiento CelularRESUMEN
Corneal limbal epithelial stem cell transplantation using cultivated human corneal epithelial cell sheets has been used successfully to treat limbal stem cell deficiencies. Here we report an investigation into the quality of cultivated human corneal epithelial cell sheets using time-lapse imaging of the cell culture process every 20 minutes over 14 days to ascertain the level of cell jamming, a phenomenon in which cells become smaller, more rounded and less actively expansive. In parallel, we also assessed the expression of p63, an important corneal epithelial stem cell marker. The occurrence of cell jamming was variable and transient, but was invariably associated with a thickening and stratification of the cell sheet. p63 was present in all expanding cell sheets in the first 9 days of culture, but it's presence did not always correlate with stratification of the cell sheet. Nor did p63 expression necessarily persist in stratified cell sheets. An assessment of cell jamming, therefore, can shed significant light on the quality and regenerative potential of cultivated human corneal epithelial cell sheets.