Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nucl Med Biol ; 126-127: 108387, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37837782

RESUMEN

The alpha emitter astatine-211 (211At) is a promising candidate for cancer treatment based on Targeted Alpha (α) Therapy (TAT). A small number of facilities, distributed across the United States, are capable of accelerating α-particle beams to produce 211At. However, challenges remain regarding strategic methods for shipping 211At in a form adaptable to advanced radiochemistry reactions and other uses of the radioisotope. PURPOSE: Our method allows shipment of 211At in various quantities in a form convenient for further radiochemistry. PROCEDURES: For this study, a 3-octanone impregnated Amberchrom CG300M resin bed in a column cartridge was used to separate 211At from the bismuth matrix on site at the production accelerator (Texas A&M) in preparation for shipping. Aliquots of 6 M HNO3 containing up to ≈2.22 GBq of 211At from the dissolved target were successfully loaded and retained on columns. Exempt packages (<370 MBq) were shipped to a destination radiochemistry facility, University of Texas MD Anderson Cancer Center, in the form of a convenient air-dried column. Type A packages have been shipped overnight to University of Alabama at Birmingham. MAIN FINDINGS: Air-dried column hold times of various lengths did not inhibit simple and efficient recovery of 211At. Solution eluted from the column was sufficiently high in specific activity to successfully radiolabel a model compound, 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline (1), with 211At. The method to prepare and ship 211At described in this manuscript has also been used to ship larger quantities of 211At a greater distance to University of Alabama at Birmingham. PRINCIPAL CONCLUSIONS: The successful proof of this method paves the way for the distribution of 211At from Texas A&M University to research institutions and clinical oncology centers in Texas and elsewhere. Use of this simple method at other facilities has the potential increase the overall availability of 211At for preclinical and clinical studies.


Asunto(s)
Astato , Humanos , Astato/uso terapéutico , Astato/química , Radioisótopos/química , Partículas alfa/uso terapéutico , Radioquímica/métodos
2.
Inorg Chem ; 61(31): 12087-12096, 2022 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-35876142

RESUMEN

Ketones have been proven effective in extracting astatine(III) from aqueous solvents. Previous theoretical studies suggested a mechanism where the "sp2" lone pair on the carbonyl oxygen donates electron density into the π system of the AtO+ molecular cation to form a dative-type bond. In this study, co-extraction of NO3- as AtO(NO3)·(O═CR1R2) species into the organic phase appears to be a key factor. Adjusting the electronic properties of the ketone, by having an aryl group instead of an alkyl group in the alpha position of the ketone, increased the electron density on C═O, increased the bond strength between the ketone and AtO+, and in turn increased the extraction of 211At into the organic phase. Extraction with diketones shows dependence on the bridging distance between the two carbonyl moieties, where a C3 or longer bridge results in a 10-fold increase in extraction into the organic phase. DFT calculations show the longer bridge allows for the chelation of AtO(NO3) by either the second carbonyl or the phenyl ring.


Asunto(s)
Astato , Cetonas , Cationes , Solventes , Agua
3.
Chem Commun (Camb) ; 56(63): 9004-9007, 2020 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-32638758

RESUMEN

Astatine-211 has been produced at Texas A&M University on the K150 cyclotron, with a yield of 890 ± 80 MBq through the 209Bi(α,2n)211At reaction via an 8 h bombardment with a beam current of 4-8 µA and an α-particle beam energy of 28.8 MeV. The target was then dissolved in HNO3 and the extraction of 211At was investigated into a variety of organic solvents in 1-3 M HNO3. Extraction of 211At with distribution ratios as high as 11.3 ± 0.6, 12.3 ± 0.8, 42.2 ± 2.2, 69 ± 4, and 95 ± 6 were observed for diisopropyl ether, 1-decanol, 1-octanol, 3-octanone, and methyl isobutyl ketone, respectively, while the distribution ratios for 207Bi were ≤0.05 in all cases. The extraction of 211At into both methyl isobutyl ketone and 3-octanone showed a strong, linear dependence on the HNO3 initial aqueous concentration and better extraction than other solvents. DFT calculations show stronger binding between the carbonyl oxygen of the ketone and the At metal center.

4.
J Phys Chem B ; 120(9): 2311-22, 2016 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-26769597

RESUMEN

Pure hydrophobic ionic liquids are known to extract metallic species from aqueous solutions. In this work we have systematically investigated thallium (Tl) extraction from aqueous hydrochloric acid (HCl) solutions into six pure fluorinated ionic liquids, namely imidazolium- and pyrrolidinium-based ionic liquids with bis(trifluoromethanesulfonyl)imide and bis(fluorosulfonyl)-imide anions. The dependence of the Tl extraction efficiency on the structure and composition of the ionic liquid ions, metal oxidation state, and initial metal and aqueous acid concentrations have been studied. Tl concentrations were on the order of picomolar (analyzed using radioactive tracers) and millimolar (analyzed using inductively coupled plasma mass spectrometry). The extraction of the cationic thallium species Tl(+) is higher for ionic liquids with more hydrophilic cations, while for the TlX(z)(3-z) anionic species (where X = Cl(-) and/or Br(-)), the extraction efficiency is greater for ionic liquids with more hydrophobic cations. The highest distribution value of Tl(III) was approximately 2000. An improved mathematical model based on ion exchange and ion pair formation mechanisms has been developed to describe the coextraction of two different anionic species, and the relative contributions of each mechanism have been determined.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA