Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Neurooncol Pract ; 11(3): 249-254, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38737612

RESUMEN

Background: Glioblastoma (GBM) is widely treated using large radiotherapy margins, resulting in substantial irradiation of the surrounding cerebral structures. In this context, the question arises whether these margins could be safely reduced. In 2018, clinical target volume (CTV) expansion was reduced in our institution from 20 to 15 mm around the gross target volume (GTV) (ie, the contrast-enhancing tumor/cavity). We sought to retrospectively analyze the impact of this reduction. Methods: All adult patients with GBM treated between January 2015 and December 2020 with concurrent chemoradiation (60Gy/2Gy or 59.4Gy/1.8Gy) were analyzed. Patients treated using a 20 (CTV20, n = 57) or 15 mm (CTV15, n = 56) CTV margin were compared for target volumes, dose parameters to the surrounding organs, pattern of recurrence, and survival outcome. Results: Mean GTV was similar in both groups (ie, CTV20: 39.7cm3; CTV15: 37.8cm3; P = .71). Mean CTV and PTV were reduced from 238.9cm3 to 176.7cm3 (P = .001) and from 292.6cm3 to 217.0cm3 (P < .001), for CTV20 and CTV15, respectively. As a result, average brain mean dose (Dmean) was reduced from 25.2Gy to 21.0Gy (P = .002). Significantly lower values were also observed for left hippocampus Dmean, brainstem D0.03cc, cochleas Dmean, and pituitary Dmean. Pattern of recurrence was similar, as well as patient outcome, ie, median progression-free survival was 8.0 and 7.0 months (P = .80), and median overall survival was 11.0 and 14.0 months (P = .61) for CTV20 and CTV15, respectively. Conclusions: In GBM patients treated with chemoradiation, reducing the CTV margin from 20 to 15 mm appears to be safe and offers the potential for less treatment toxicity.

2.
Sci Rep ; 9(1): 4126, 2019 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-30858409

RESUMEN

In radiotherapy, computed tomography (CT) datasets are mostly used for radiation treatment planning to achieve a high-conformal tumor coverage while optimally sparing healthy tissue surrounding the tumor, referred to as organs-at-risk (OARs). Based on CT scan and/or magnetic resonance images, OARs have to be manually delineated by clinicians, which is one of the most time-consuming tasks in the clinical workflow. Recent multi-atlas (MA) or deep-learning (DL) based methods aim to improve the clinical routine by an automatic segmentation of OARs on a CT dataset. However, so far no studies investigated the performance of these MA or DL methods on dual-energy CT (DECT) datasets, which have been shown to improve the image quality compared to conventional 120 kVp single-energy CT. In this study, the performance of an in-house developed MA and a DL method (two-step three-dimensional U-net) was quantitatively and qualitatively evaluated on various DECT-derived pseudo-monoenergetic CT datasets ranging from 40 keV to 170 keV. At lower energies, the MA method resulted in more accurate OAR segmentations. Both the qualitative and quantitative metric analysis showed that the DL approach often performed better than the MA method.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Aprendizaje Profundo , Procesamiento de Imagen Asistido por Computador/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Tomografía Computarizada por Rayos X/métodos , Neoplasias Encefálicas/radioterapia , Humanos , Imagen por Resonancia Magnética/métodos , Órganos en Riesgo
3.
Front Oncol ; 8: 154, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29868476

RESUMEN

Brain metastases (BM) frequently occur in non-small cell lung cancer (NSCLC) patients. Most patients with BM have a limited life expectancy, measured in months. Selected patients may experience a very long progression-free survival, for example, patients with a targetable driver mutation. Traditionally, whole-brain radiotherapy (WBRT) has been the cornerstone of the treatment, but its indication is a matter of debate. A randomized trial has shown that for patients with a poor prognosis, WBRT does not add quality of life (QoL) nor survival over the best supportive care. In recent decades, stereotactic radiosurgery (SRS) has become an attractive non-invasive treatment for patients with BM. Only the BM is irradiated to an ablative dose, sparing healthy brain tissue. Intracranial recurrence rates decrease when WBRT is administered following SRS or resection but does not improve overall survival and comes at the expense of neurocognitive function and QoL. The downside of SRS compared with WBRT is a risk of radionecrosis (RN) and a higher risk of developing new BM during follow-up. Currently, SRS is an established treatment for patients with a maximum of four BM. Several promising strategies are currently being investigated to further improve the indication and outcome of SRS for patients with BM: the effectivity and safety of SRS in patients with more than four BM, combining SRS with systemic therapy such as targeted agents or immunotherapy, shared decision-making with SRS as a treatment option, and individualized isotoxic dose prescription to mitigate the risk of RN and further enhance local control probability of SRS. This review discusses the current indications of SRS and future directions of treatment for patients with BM of NSCLC with focus on the value of SRS.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...