Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(17)2021 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-34502170

RESUMEN

(1) Background: Pleiotrophin preserves insulin sensitivity, regulates adipose tissue lipid turnover and plasticity, energy metabolism and thermogenesis. The aim of this study was to determine the role of pleiotrophin in hepatic lipid metabolism and in the metabolic crosstalk between the liver and brown and white adipose tissue (AT) in a high-fat diet-induced (HFD) obesity mice model. (2) Methods: We analyzed circulating variables, lipid metabolism (hepatic lipid content and mRNA expression), brown AT thermogenesis (UCP-1 expression) and periovarian AT browning (brown adipocyte markers mRNA and immunodetection) in Ptn-/- mice either fed with standard-chow diet or with HFD and in their corresponding Ptn+/+ counterparts. (3) Results: HFD-Ptn-/- mice are protected against the development of HFD-induced insulin resistance, had lower liver lipid content and lower expression of the key enzymes involved in triacylglycerides and fatty acid synthesis in liver. HFD-Ptn-/- mice showed higher UCP-1 expression in brown AT. Moreover, Ptn deletion increased the expression of specific markers of brown/beige adipocytes and was associated with the immunodetection of UCP-1 enriched multilocular adipocytes in periovarian AT. (4) Conclusions: Ptn deletion protects against the development of HFD-induced insulin resistance and liver steatosis, by increasing UCP-1 expression in brown AT and promoting periovarian AT browning.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Citocinas/deficiencia , Dieta Alta en Grasa/efectos adversos , Susceptibilidad a Enfermedades , Hígado Graso/etiología , Hígado Graso/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Biomarcadores , Proteínas Portadoras , Modelos Animales de Enfermedad , Metabolismo Energético , Hígado Graso/patología , Expresión Génica , Hígado/metabolismo , Hígado/patología , Ratones , Ratones Noqueados , Tamaño de los Órganos , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
2.
Mol Cell ; 52(4): 541-53, 2013 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-24207056

RESUMEN

We describe a second primase in human cells, PrimPol, which has the ability to start DNA chains with deoxynucleotides unlike regular primases, which use exclusively ribonucleotides. Moreover, PrimPol is also a DNA polymerase tailored to bypass the most common oxidative lesions in DNA, such as abasic sites and 8-oxoguanine. Subcellular fractionation and immunodetection studies indicated that PrimPol is present in both nuclear and mitochondrial DNA compartments. PrimPol activity is detectable in mitochondrial lysates from human and mouse cells but is absent from mitochondria derived from PRIMPOL knockout mice. PRIMPOL gene silencing or ablation in human and mouse cells impaired mitochondrial DNA replication. On the basis of the synergy observed with replicative DNA polymerases Polγ and Polε, PrimPol is proposed to facilitate replication fork progression by acting as a translesion DNA polymerase or as a specific DNA primase reinitiating downstream of lesions that block synthesis during both mitochondrial and nuclear DNA replication.


Asunto(s)
ADN Primasa/fisiología , Replicación del ADN , ADN Polimerasa Dirigida por ADN/fisiología , Enzimas Multifuncionales/fisiología , Secuencia de Aminoácidos , Animales , Ácido Apurínico/química , Secuencia de Bases , Dominio Catalítico , Núcleo Celular/enzimología , ADN Polimerasa II/química , ADN Polimerasa gamma , ADN Primasa/química , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , ADN de Cadena Simple/química , ADN de Cadena Simple/genética , ADN Polimerasa Dirigida por ADN/química , Desoxiadenosinas/química , Desoxirribonucleótidos/química , Células HEK293 , Células HeLa , Humanos , Ratones , Ratones Noqueados , Mitocondrias/enzimología , Datos de Secuencia Molecular , Enzimas Multifuncionales/química
3.
Nucleic Acids Res ; 41(1): 253-63, 2013 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-23143108

RESUMEN

Polµ is the only DNA polymerase equipped with template-directed and terminal transferase activities. Polµ is also able to accept distortions in both primer and template strands, resulting in misinsertions and extension of realigned mismatched primer terminus. In this study, we propose a model for human Polµ-mediated dinucleotide expansion as a function of the sequence context. In this model, Polµ requires an initial dislocation, that must be subsequently stabilized, to generate large sequence expansions at different 5'-P-containing DNA substrates, including those that mimic non-homologous end-joining (NHEJ) intermediates. Our mechanistic studies point at human Polµ residues His(329) and Arg(387) as responsible for regulating nucleotide expansions occurring during DNA repair transactions, either promoting or blocking, respectively, iterative polymerization. This is reminiscent of the role of both residues in the mechanism of terminal transferase activity. The iterative synthesis performed by Polµ at various contexts may lead to frameshift mutations producing DNA damage and instability, which may end in different human disorders, including cancer or congenital abnormalities.


Asunto(s)
Reparación del ADN por Unión de Extremidades , Expansión de las Repeticiones de ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Arginina/química , ADN Polimerasa beta/metabolismo , ADN Polimerasa Dirigida por ADN/química , Histidina/química , Humanos , Moldes Genéticos , Repeticiones de Trinucleótidos
4.
Nucleic Acids Res ; 40(16): 7844-57, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22684502

RESUMEN

The transcription factor Sp2 is essential for early mouse development and for proliferation of mouse embryonic fibroblasts in culture. Yet its mechanisms of action and its target genes are largely unknown. In this study, we have combined RNA interference, in vitro DNA binding, chromatin immunoprecipitation sequencing and global gene-expression profiling to investigate the role of Sp2 for cellular functions, to define target sites and to identify genes regulated by Sp2. We show that Sp2 is important for cellular proliferation that it binds to GC-boxes and occupies proximal promoters of genes essential for vital cellular processes including gene expression, replication, metabolism and signalling. Moreover, we identified important key target genes and cellular pathways that are directly regulated by Sp2. Most significantly, Sp2 binds and activates numerous sequence-specific transcription factor and co-activator genes, and represses the whole battery of cholesterol synthesis genes. Our results establish Sp2 as a sequence-specific regulator of vitally important genes.


Asunto(s)
Regulación de la Expresión Génica , Factor de Transcripción Sp2/metabolismo , Animales , Secuencia de Bases , Sitios de Unión , Proliferación Celular , ADN/química , ADN/metabolismo , Minería de Datos , Eliminación de Gen , Perfilación de la Expresión Génica , Genoma , Células HEK293 , Células HeLa , Humanos , Ratones , Posición Específica de Matrices de Puntuación , Regiones Promotoras Genéticas , Interferencia de ARN , Factor de Transcripción Sp1/metabolismo , Factor de Transcripción Sp2/antagonistas & inhibidores , Factor de Transcripción Sp2/genética
5.
PLoS One ; 4(10): e7290, 2009 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-19806195

RESUMEN

BACKGROUND: DNA polymerase lambda (Pollambda) is a DNA repair polymerase, which likely plays a role in base excision repair (BER) and in non-homologous end joining (NHEJ) of DNA double-strand breaks (DSB). PRINCIPAL FINDINGS: Here, we described a novel natural allelic variant of human Pollambda (hPollambda) characterized by a single nucleotide polymorphism (SNP), C/T variation in the first base of codon 438, resulting in the amino acid change Arg to Trp. In vitro enzyme activity assays of the purified W438 Pollambda variant revealed that it retained both DNA polymerization and deoxyribose phosphate (dRP) lyase activities, but had reduced base substitution fidelity. Ectopic expression of the W438 hPollambda variant in mammalian cells increases mutation frequency, affects the DSB repair NHEJ pathway, and generates chromosome aberrations. All these phenotypes are dependent upon the catalytic activity of the W438 hPollambda. CONCLUSIONS: The expression of a cancer-related natural variant of one specialized DNA polymerase can be associated to generic instability at the cromosomal level, probably due a defective NHEJ. These results establish that chromosomal aberrations can result from mutations in specialized DNA repair polymerases.


Asunto(s)
Inestabilidad Cromosómica/genética , ADN Polimerasa beta/genética , Enzimas Reparadoras del ADN/genética , Proteínas de Unión al ADN/genética , Mutación , Aminoácidos/química , Arginina/química , Aberraciones Cromosómicas , Codón , ADN/química , Roturas del ADN de Doble Cadena , Análisis Mutacional de ADN , ADN Polimerasa beta/fisiología , Reparación del ADN , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Humanos , Polimorfismo de Nucleótido Simple , Triptófano/química
6.
PLoS Genet ; 5(2): e1000389, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19229323

RESUMEN

Polymerase micro (Polmicro) is an error-prone, DNA-directed DNA polymerase that participates in non-homologous end-joining (NHEJ) repair. In vivo, Polmicro deficiency results in impaired Vkappa-Jkappa recombination and altered somatic hypermutation and centroblast development. In Polmicro(-/-) mice, hematopoietic development was defective in several peripheral and bone marrow (BM) cell populations, with about a 40% decrease in BM cell number that affected several hematopoietic lineages. Hematopoietic progenitors were reduced both in number and in expansion potential. The observed phenotype correlates with a reduced efficiency in DNA double-strand break (DSB) repair in hematopoietic tissue. Whole-body gamma-irradiation revealed that Polmicro also plays a role in DSB repair in non-hematopoietic tissues. Our results show that Polmicro function is required for physiological hematopoietic development with an important role in maintaining early progenitor cell homeostasis and genetic stability in hematopoietic and non-hematopoietic tissues.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Hematopoyesis , Animales , Células Cultivadas , ADN Polimerasa Dirigida por ADN/genética , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/enzimología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados
7.
Mol Cell Biol ; 29(5): 1266-75, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19103746

RESUMEN

The molecular complexes involved in the nonhomologous end-joining process that resolves recombination-activating gene (RAG)-induced double-strand breaks and results in V(D)J gene rearrangements vary during mammalian ontogeny. In the mouse, the first immunoglobulin gene rearrangements emerge during midgestation periods, but their repertoires have not been analyzed in detail. We decided to study the postgastrulation DJ(H) joints and compare them with those present in later life. The embryo DJ(H) joints differed from those observed in perinatal life by the presence of short stretches of nontemplated (N) nucleotides. Whereas most adult N nucleotides are introduced by terminal deoxynucleotidyl transferase (TdT), the embryo N nucleotides were due to the activity of the homologous DNA polymerase mu (Polmu), which was widely expressed in the early ontogeny, as shown by analysis of Polmu(-/-) embryos. Based on its DNA-dependent polymerization ability, which TdT lacks, Polmu also filled in small sequence gaps at the coding ends and contributed to the ligation of highly processed ends, frequently found in the embryo, by pairing to internal microhomology sites. These findings show that Polmu participates in the repair of early-embryo, RAG-induced double-strand breaks and subsequently may contribute to preserve the genomic stability and cellular homeostasis of lymphohematopoietic precursors during development.


Asunto(s)
ADN Polimerasa Dirigida por ADN/fisiología , Gastrulación/genética , Región de Unión de la Inmunoglobulina/genética , Animales , Roturas del ADN de Doble Cadena , ADN Nucleotidilexotransferasa , Reparación del ADN , Embrión de Mamíferos , Desarrollo Embrionario/genética , Reordenamiento Génico , Cadenas Pesadas de Inmunoglobulina , Ratones
8.
DNA Repair (Amst) ; 5(1): 89-101, 2006 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-16174567

RESUMEN

Leishmania infantum is a parasitic protozoan which infects humans. This paper reports the expression in Escherichia coli and purification of the L. infantum gene product (AF182167), as well as its characterization as a DNA polymerase beta (Polbeta)-like, template-dependent DNA repair enzyme, with a metal preference for Mn2+ over Mg2+. As is the case with mammalian Polbeta and DNA polymerase lambda (Pollambda), L. infantum DNA polymerase beta (Li Polbeta) prefers gapped-DNA substrates having a 5'-phosphate end, in agreement with its role in DNA repair reactions. Purified Li Polbeta also displayed a 5'-deoxyribose-5-phosphate (dRP) lyase activity, consistent with a beta-elimination mechanism. The concerted action of dRP lyase and DNA polymerization activities of Li Polbeta on a uracil-containing DNA suggests its participation in "single-nucleotide" base excision repair (BER). Analysis of Li Polbeta DNA polymerization activity at different stages of the L. infantum infective cycle supports a role for Li Polbeta in nuclear DNA repair after the oxidative damage occurring inside the macrophage.


Asunto(s)
ADN Polimerasa beta/metabolismo , Reparación del ADN/fisiología , Leishmania infantum/enzimología , Liasas de Fósforo-Oxígeno/metabolismo , Secuencia de Aminoácidos , Animales , ADN Polimerasa beta/genética , Regulación Enzimológica de la Expresión Génica , Cuerpos de Inclusión/genética , Leishmania infantum/fisiología , Magnesio/metabolismo , Manganeso/metabolismo , Datos de Secuencia Molecular , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
9.
Nucleic Acids Res ; 33(15): 4762-74, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16120966

RESUMEN

As predicted by the amino acid sequence, the purified protein coded by Schizosaccharomyces pombe SPAC2F7.06c is a DNA polymerase (SpPol4) whose biochemical properties resemble those of other X family (PolX) members. Thus, this new PolX is template-dependent, polymerizes in a distributive manner, lacks a detectable 3'-->5' proofreading activity and its preferred substrates are small gaps with a 5'-phosphate group. Similarly to Polmu, SpPol4 can incorporate a ribonucleotide (rNTP) into a primer DNA. However, it is not responsible for the 1-2 rNTPs proposed to be present at the mating-type locus and those necessary for mating-type switching. Unlike Polmu, SpPol4 lacks terminal deoxynucleotidyltransferase activity and realigns the primer terminus to alternative template bases only under certain sequence contexts and, therefore, it is less error-prone than Polmu. Nonetheless, the biochemical properties of this gap-filling DNA polymerase are suitable for a possible role of SpPol4 in non-homologous end-joining. Unexpectedly based on sequence analysis, SpPol4 has deoxyribose phosphate lyase activity like Polbeta and Pollambda, and unlike Polmu, suggesting also a role of this enzyme in base excision repair. Therefore, SpPol4 is a unique enzyme whose enzymatic properties are hybrid of those described for mammalian Polbeta, Pollambda and Polmu.


Asunto(s)
ADN Polimerasa Dirigida por ADN/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/enzimología , Secuencia de Aminoácidos , ADN Nucleotidilexotransferasa/metabolismo , Cartilla de ADN , Reparación del ADN , ADN Polimerasa Dirigida por ADN/clasificación , ADN Polimerasa Dirigida por ADN/genética , Desoxirribonucleótidos/metabolismo , Exodesoxirribonucleasas/metabolismo , Impresión Genómica , Datos de Secuencia Molecular , Fosfatos/química , Liasas de Fósforo-Oxígeno/metabolismo , Purinas/metabolismo , Ribonucleótidos/metabolismo , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/clasificación , Proteínas de Schizosaccharomyces pombe/genética , Moldes Genéticos
10.
DNA Repair (Amst) ; 3(7): 703-10, 2004 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-15177179

RESUMEN

Several DNA polymerases (Pols) can add complementary bases at the gap created during the base excision repair (BER). To characterize the BER resynthesis step, the repair of a single abasic site by wild-type and Pol beta-defective mouse cell extracts was analysed in the presence of aphidicolin, a specific inhibitor of replicative Pols. We show that there is a competition between distributive and processive Pols for the nucleotide addition at the primer terminus. In wild-type cell extracts, the initial nucleotide insertion involves mainly Pol beta but the elongation step is carried out by a replicative Pol. Conversely, in Pol beta-null cell extracts the synthesis step is carried out by a replicative Pol without any switching to an auxiliary polymerase. We present evidence that short-patch repair synthesis occurs even in the absence of both Pol beta and replicative Pols. Exogeneously added purified human Pol lambda was unable to stimulate this back-up synthesis.


Asunto(s)
Afidicolina/farmacología , ADN Polimerasa beta/metabolismo , Reparación del ADN/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Animales , Secuencia de Bases , Extractos Celulares , ADN Polimerasa beta/deficiencia , ADN Polimerasa beta/genética , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Cinética , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Oligonucleótidos/genética , Oligonucleótidos/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo
11.
Nucleic Acids Res ; 31(15): 4441-9, 2003 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-12888504

RESUMEN

DNA polymerase mu (Pol mu) is a novel family X DNA polymerase that has been suggested to play a role in micro-homology mediated joining and repair of double strand breaks. We show here that human Pol mu is not able to discriminate against the 2'-OH group of the sugar moiety. It inserts rNTPs with an efficiency that is <10-fold lower than that of dNTPs, in sharp contrast with the >1000-fold discrimination characteristic of most DNA-dependent DNA polymerases. The lack of sugar discrimination by Pol mu is demonstrated by its ability to add rNTPs to both DNA and RNA primer strands, and to insert both deoxy- and ribonucleotides on growing nucleic acid chains. 3D-modelling of human Pol mu based on the available Pol beta and TdT structural information allowed us to predict candidate residues involved in sugar discrimination. Thus, a single amino acid substitution in which Gly433 residue of Pol mu was mutated to the consensus tyrosine present in Pol beta, produced a strong increase in the discrimination against ribonucleotides. The unusual capacity to insert both rNTPs and dNTPs will be discussed in the context of the predicted roles of Pol mu in DNA repair.


Asunto(s)
ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/metabolismo , ADN/biosíntesis , Glicina/fisiología , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Emparejamiento Base , Secuencia de Bases , Carbohidratos/química , Cartilla de ADN/metabolismo , ADN Polimerasa Dirigida por ADN/genética , Desoxirribonucleótidos/metabolismo , Glicina/genética , Humanos , Datos de Secuencia Molecular , ARN/biosíntesis , ARN/metabolismo , Ribonucleótidos/metabolismo , Alineación de Secuencia , Especificidad por Sustrato , Moldes Genéticos
12.
ScientificWorldJournal ; 3: 422-31, 2003 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-12806103

RESUMEN

DNA polymerases are involved in different cellular events, including genome replication and DNA repair. In the last few years, a large number of novel DNA polymerases have been discovered, and the biochemical analysis of their properties has revealed a long list of intriguing features. Some of these polymerases have a very low fidelity and have been suggested to play mutator roles in different processes, like translesion synthesis or somatic hypermutation. The current view of these processes is reviewed, and the current understanding of DNA polymerases and their role as mutator enzymes is discussed.


Asunto(s)
ADN Polimerasa Dirigida por ADN/fisiología , Mutagénesis/fisiología , ADN Polimerasa Dirigida por ADN/química , Modelos Estructurales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...