Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Methods Mol Biol ; 2272: 13-27, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34009606

RESUMEN

Aba-Seq (DNA modification-dependent restriction endonuclease AbaSI coupled with sequencing) provides a cost-effective and non-chemical based method for the high-resolution mapping of genomic 5-hydroxymethylcytosine (5hmC). The high specificity of the AbaSI enzyme allows sensitive detection of 5hmC in the genome. Here, we describe the Aba-Seq technique that was used for the high-resolution mapping of 5hmC in the genome of mouse embryonic stem cells (E14).


Asunto(s)
5-Metilcitosina/análogos & derivados , Metilación de ADN , Enzimas de Restricción del ADN/metabolismo , Genoma , Células Madre Embrionarias de Ratones/metabolismo , Análisis de Secuencia de ADN/métodos , 5-Metilcitosina/química , Animales , Genómica , Ratones , Células Madre Embrionarias de Ratones/citología
2.
Nature ; 555(7696): 392-396, 2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29513657

RESUMEN

Gametes are highly specialized cells that can give rise to the next generation through their ability to generate a totipotent zygote. In mice, germ cells are first specified in the developing embryo around embryonic day (E) 6.25 as primordial germ cells (PGCs). Following subsequent migration into the developing gonad, PGCs undergo a wave of extensive epigenetic reprogramming around E10.5-E11.5, including genome-wide loss of 5-methylcytosine. The underlying molecular mechanisms of this process have remained unclear, leading to our inability to recapitulate this step of germline development in vitro. Here we show, using an integrative approach, that this complex reprogramming process involves coordinated interplay among promoter sequence characteristics, DNA (de)methylation, the polycomb (PRC1) complex and both DNA demethylation-dependent and -independent functions of TET1 to enable the activation of a critical set of germline reprogramming-responsive genes involved in gamete generation and meiosis. Our results also reveal an unexpected role for TET1 in maintaining but not driving DNA demethylation in gonadal PGCs. Collectively, our work uncovers a fundamental biological role for gonadal germline reprogramming and identifies the epigenetic principles of the PGC-to-gonocyte transition that will help to guide attempts to recapitulate complete gametogenesis in vitro.


Asunto(s)
Reprogramación Celular/genética , Epigénesis Genética , Gametogénesis/genética , Células Germinativas/citología , Células Germinativas/metabolismo , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Animales , Metilación de ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Femenino , Masculino , Meiosis , Ratones , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo
3.
Hum Mol Genet ; 24(16): 4660-73, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-26041816

RESUMEN

Myogenic regulatory factor (MRF) genes, MYOD1, MYOG, MYF6 and MYF5, are critical for the skeletal muscle lineage. Here, we used various epigenome profiles from human myoblasts (Mb), myotubes (Mt), muscle and diverse non-muscle samples to elucidate the involvement of multigene neighborhoods in the regulation of MRF genes. We found more far-distal enhancer chromatin associated with MRF genes in Mb and Mt than previously reported from studies in mice. For the MYF5/MYF6 gene-pair, regions of Mb-associated enhancer chromatin were located throughout the adjacent 236-kb PTPRQ gene even though Mb expressed negligible amounts of PTPRQ mRNA. Some enhancer chromatin regions inside PTPRQ in Mb were also seen in PTPRQ mRNA-expressing non-myogenic cells. This suggests dual-purpose PTPRQ enhancers that upregulate expression of PTPRQ in non-myogenic cells and MYF5/MYF6 in myogenic cells. In contrast, the myogenic enhancer chromatin regions distal to MYOD1 were intergenic and up to 19 kb long. Two of them contain small, known MYOD1 enhancers, and one displayed an unusually high level of 5-hydroxymethylcytosine in a quantitative DNA hydroxymethylation assay. Unexpectedly, three regions of MYOD1-distal enhancer chromatin in Mb and Mt overlapped enhancer chromatin in umbilical vein endothelial cells, which might upregulate a distant gene (PIK3C2A). Lastly, genes surrounding MYOG were preferentially transcribed in Mt, like MYOG itself, and exhibited nearby myogenic enhancer chromatin. These neighboring chromatin regions may be enhancers acting in concert to regulate myogenic expression of multiple adjacent genes. Our findings reveal the very different and complex organization of gene neighborhoods containing closely related transcription factor genes.


Asunto(s)
Epigénesis Genética/fisiología , Mioblastos Esqueléticos/metabolismo , Factores Reguladores Miogénicos/metabolismo , Fosfatidilinositol 3-Quinasas/biosíntesis , Proteínas Tirosina Fosfatasas Clase 3 Similares a Receptores/biosíntesis , Animales , Línea Celular , Fosfatidilinositol 3-Quinasa Clase I , Humanos , Ratones , Mioblastos Esqueléticos/citología , Factores Reguladores Miogénicos/genética , Fosfatidilinositol 3-Quinasas/genética , Proteínas Tirosina Fosfatasas Clase 3 Similares a Receptores/genética
4.
Nucleic Acids Res ; 43(12): 6112-24, 2015 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-25990724

RESUMEN

Mammalian cells contain copious amounts of RNA including both coding and noncoding RNA (ncRNA). Generally the ncRNAs function to regulate gene expression at the transcriptional and post-transcriptional level. Among ncRNA, the long ncRNA and small ncRNA can affect histone modification, DNA methylation targeting and gene silencing. Here we show that endogenous DNA methyltransferase 1 (DNMT1) co-purifies with inhibitory ncRNAs. MicroRNAs (miRNAs) bind directly to DNMT1 with high affinity. The binding of miRNAs, such as miR-155-5p, leads to inhibition of DNMT1 enzyme activity. Exogenous miR-155-5p in cells induces aberrant DNA methylation of the genome, resulting in hypomethylation of low to moderately methylated regions. And small shift of hypermethylation of previously hypomethylated region was also observed. Furthermore, hypomethylation led to activation of genes. Based on these observations, overexpression of miR-155-5p resulted in aberrant DNA methylation by inhibiting DNMT1 activity, resulting in altered gene expression.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/antagonistas & inhibidores , Metilación de ADN , MicroARNs/metabolismo , Línea Celular , ADN (Citosina-5-)-Metiltransferasa 1 , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Regulación de la Expresión Génica , Genoma Humano , Células HEK293 , Humanos
5.
Epigenetics ; 9(6): 842-50, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24670287

RESUMEN

Notch intercellular signaling is critical for diverse developmental pathways and for homeostasis in various types of stem cells and progenitor cells. Because Notch gene products need to be precisely regulated spatially and temporally, epigenetics is likely to help control expression of Notch signaling genes. Reduced representation bisulfite sequencing (RRBS) indicated significant hypomethylation in myoblasts, myotubes, and skeletal muscle vs. many nonmuscle samples at intragenic or intergenic regions of the following Notch receptor or ligand genes: NOTCH1, NOTCH2, JAG2, and DLL1. An enzymatic assay of sites in or near these genes revealed unusually high enrichment of 5-hydroxymethylcytosine (up to 81%) in skeletal muscle, heart, and cerebellum. Epigenetics studies and gene expression profiles suggest that hypomethylation and/or hydroxymethylation help control expression of these genes in heart, brain, myoblasts, myotubes, and within skeletal muscle myofibers. Such regulation could promote cell renewal, cell maintenance, homeostasis, and a poised state for repair of tissue damage.


Asunto(s)
Cerebelo/metabolismo , Citosina/análogos & derivados , Metilación de ADN , Músculo Esquelético/metabolismo , Miocardio/metabolismo , Receptores Notch/genética , 5-Metilcitosina/análogos & derivados , Anciano , Anciano de 80 o más Años , Cromatina/metabolismo , Citosina/metabolismo , Proteínas de Unión al ADN/metabolismo , Dioxigenasas , Femenino , Histonas/metabolismo , Humanos , Masculino , Oxigenasas de Función Mixta , Fibras Musculares Esqueléticas/metabolismo , Mioblastos/metabolismo , Especificidad de Órganos , Procesamiento Proteico-Postraduccional , Proteínas Proto-Oncogénicas/metabolismo , Receptores Notch/metabolismo
6.
J Biol Chem ; 289(12): 8277-87, 2014 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-24492612

RESUMEN

Inheritance of DNA cytosine methylation pattern during successive cell division is mediated by maintenance DNA (cytosine-5) methyltransferase 1 (DNMT1). Lysine 142 of DNMT1 is methylated by the SET domain containing lysine methyltransferase 7 (SET7), leading to its degradation by proteasome. Here we show that PHD finger protein 20-like 1 (PHF20L1) regulates DNMT1 turnover in mammalian cells. Malignant brain tumor (MBT) domain of PHF20L1 binds to monomethylated lysine 142 on DNMT1 (DNMT1K142me1) and colocalizes at the perinucleolar space in a SET7-dependent manner. PHF20L1 knockdown by siRNA resulted in decreased amounts of DNMT1 on chromatin. Ubiquitination of DNMT1K142me1 was abolished by overexpression of PHF20L1, suggesting that its binding may block proteasomal degradation of DNMT1K142me1. Conversely, siRNA-mediated knockdown of PHF20L1 or incubation of a small molecule MBT domain binding inhibitor in cultured cells accelerated the proteasomal degradation of DNMT1. These results demonstrate that the MBT domain of PHF20L1 reads and controls enzyme levels of methylated DNMT1 in cells, thus representing a novel antagonist of DNMT1 degradation.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Lisina/análogos & derivados , Línea Celular , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/genética , ADN (Citosina-5-)-Metiltransferasa 1 , Metilación de ADN , Humanos , Mapas de Interacción de Proteínas , Estructura Terciaria de Proteína , Proteolisis , Interferencia de ARN , Regulación hacia Arriba
7.
Nature ; 503(7476): 371-6, 2013 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-24107992

RESUMEN

DNA methylation was first described almost a century ago; however, the rules governing its establishment and maintenance remain elusive. Here we present data demonstrating that active transcription regulates levels of genomic methylation. We identify a novel RNA arising from the CEBPA gene locus that is critical in regulating the local DNA methylation profile. This RNA binds to DNMT1 and prevents CEBPA gene locus methylation. Deep sequencing of transcripts associated with DNMT1 combined with genome-scale methylation and expression profiling extend the generality of this finding to numerous gene loci. Collectively, these results delineate the nature of DNMT1-RNA interactions and suggest strategies for gene-selective demethylation of therapeutic targets in human diseases.


Asunto(s)
Proteínas Potenciadoras de Unión a CCAAT/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN/genética , Regulación de la Expresión Génica/genética , ARN no Traducido/metabolismo , Secuencia de Bases , Línea Celular , ADN/genética , ADN/metabolismo , ADN (Citosina-5-)-Metiltransferasa 1 , Perfilación de la Expresión Génica , Genoma Humano/genética , Humanos , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN no Traducido/genética , Proteínas de Unión al ARN/metabolismo , Especificidad por Sustrato , Transcripción Genética/genética
8.
Epigenetics Chromatin ; 6(1): 25, 2013 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-23916067

RESUMEN

BACKGROUND: Tight regulation of homeobox genes is essential for vertebrate development. In a study of genome-wide differential methylation, we recently found that homeobox genes, including those in the HOX gene clusters, were highly overrepresented among the genes with hypermethylation in the skeletal muscle lineage. Methylation was analyzed by reduced representation bisulfite sequencing (RRBS) of postnatal myoblasts, myotubes and adult skeletal muscle tissue and 30 types of non-muscle-cell cultures or tissues. RESULTS: In this study, we found that myogenic hypermethylation was present in specific subregions of all four HOX gene clusters and was associated with various chromatin epigenetic features. Although the 3' half of the HOXD cluster was silenced and enriched in polycomb repression-associated H3 lysine 27 trimethylation in most examined cell types, including myoblasts and myotubes, myogenic samples were unusual in also displaying much DNA methylation in this region. In contrast, both HOXA and HOXC clusters displayed myogenic hypermethylation bordering a central region containing many genes preferentially expressed in myogenic progenitor cells and consisting largely of chromatin with modifications typical of promoters and enhancers in these cells. A particularly interesting example of myogenic hypermethylation was HOTAIR, a HOXC noncoding RNA gene, which can silence HOXD genes in trans via recruitment of polycomb proteins. In myogenic progenitor cells, the preferential expression of HOTAIR was associated with hypermethylation immediately downstream of the gene. Other HOX gene regions also displayed myogenic DNA hypermethylation despite being moderately expressed in myogenic cells. Analysis of representative myogenic hypermethylated sites for 5-hydroxymethylcytosine revealed little or none of this base, except for an intragenic site in HOXB5 which was specifically enriched in this base in skeletal muscle tissue, whereas myoblasts had predominantly 5-methylcytosine at the same CpG site. CONCLUSIONS: Our results suggest that myogenic hypermethylation of HOX genes helps fine-tune HOX sense and antisense gene expression through effects on 5' promoters, intragenic and intergenic enhancers and internal promoters. Myogenic hypermethylation might also affect the relative abundance of different RNA isoforms, facilitate transcription termination, help stop the spread of activation-associated chromatin domains and stabilize repressive chromatin structures.

9.
Epigenetics ; 8(3): 317-32, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23417056

RESUMEN

Myogenic cell cultures derived from muscle biopsies are excellent models for human cell differentiation. We report the first comprehensive analysis of myogenesis-specific DNA hyper- and hypo-methylation throughout the genome for human muscle progenitor cells (both myoblasts and myotubes) and skeletal muscle tissue vs. 30 non-muscle samples using reduced representation bisulfite sequencing. We also focused on four genes with extensive hyper- or hypo-methylation in the muscle lineage (PAX3, TBX1, MYH7B/MIR499 and OBSCN) to compare DNA methylation, DNaseI hypersensitivity, histone modification, and CTCF binding profiles. We found that myogenic hypermethylation was strongly associated with homeobox or T-box genes and muscle hypomethylation with contractile fiber genes. Nonetheless, there was no simple relationship between differential gene expression and myogenic differential methylation, rather only for subsets of these genes, such as contractile fiber genes. Skeletal muscle retained ~30% of the hypomethylated sites but only ~3% of hypermethylated sites seen in myogenic progenitor cells. By enzymatic assays, skeletal muscle was 2-fold enriched globally in genomic 5-hydroxymethylcytosine (5-hmC) vs. myoblasts or myotubes and was the only sample type enriched in 5-hmC at tested myogenic hypermethylated sites in PAX3/CCDC140 andTBX1. TET1 and TET2 RNAs, which are involved in generation of 5-hmC and DNA demethylation, were strongly upregulated in myoblasts and myotubes. Our findings implicate de novo methylation predominantly before the myoblast stage and demethylation before and after the myotube stage in control of transcription and co-transcriptional RNA processing. They also suggest that, in muscle, TET1 or TET2 are involved in active demethylation and in formation of stable 5-hmC residues.


Asunto(s)
Linaje de la Célula/genética , Metilación de ADN , Desarrollo de Músculos/genética , Distrofia Muscular Facioescapulohumeral/genética , 5-Metilcitosina/análogos & derivados , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Factor de Unión a CCCTC , Miosinas Cardíacas/genética , Miosinas Cardíacas/metabolismo , Estudios de Casos y Controles , Niño , Citosina/análogos & derivados , Citosina/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Dioxigenasas , Epigénesis Genética , Femenino , Regulación del Desarrollo de la Expresión Génica , Genes Homeobox , Genoma Humano , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Histonas/metabolismo , Humanos , Recién Nacido , Masculino , Persona de Mediana Edad , Oxigenasas de Función Mixta , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Distrofia Muscular Facioescapulohumeral/metabolismo , Mioblastos/metabolismo , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Factor de Transcripción PAX3 , Factores de Transcripción Paired Box/genética , Factores de Transcripción Paired Box/metabolismo , Proteínas Serina-Treonina Quinasas , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Represoras/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Transcripción Genética
10.
Cell Rep ; 3(2): 567-76, 2013 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-23352666

RESUMEN

We describe the use of a unique DNA-modification-dependent restriction endonuclease AbaSI coupled with sequencing (Aba-seq) to map high-resolution hydroxymethylome of mouse E14 embryonic stem cells. The specificity of AbaSI enables sensitive detection of 5-hydroxymethylcytosine (5hmC) at low-occupancy regions. Bioinformatic analysis suggests 5hmCs in genic regions closely follow the 5mC distribution. 5hmC is generally depleted in CpG islands and only enriched in a small set of repetitive elements. A regularly spaced and oscillating 5hmC pattern was observed at the binding sites of CTCF. 5hmC is enriched at the poised enhancers with the monomethylated histone H3 lysine 4 (H3K4me1) marks, but not at the active enhancers with the acetylated histone H3 lysine 27 (H3K27Ac) marks. Non-CG hydroxymethylation appears to be prevalent in the mitochondrial genome. We propose that some amounts of transiently stable 5hmCs may indicate a poised epigenetic state or demethylation intermediate, whereas others may suggest a locally accessible chromosomal environment for the TET enzymatic apparatus.


Asunto(s)
Mapeo Cromosómico , Citosina/análogos & derivados , Enzimas de Restricción del ADN/metabolismo , Células Madre Embrionarias/metabolismo , Análisis de Secuencia de ADN , 5-Metilcitosina/análogos & derivados , Animales , Línea Celular , Biología Computacional , Islas de CpG , Citosina/análisis , Metilación de ADN , Células Madre Embrionarias/citología , Genómica , Histonas/metabolismo , Hidroxilación , Ratones
11.
Cell ; 151(1): 167-80, 2012 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-23021223

RESUMEN

DNA methylation and histone modification exert epigenetic control over gene expression. CHG methylation by CHROMOMETHYLASE3 (CMT3) depends on histone H3K9 dimethylation (H3K9me2), but the mechanism underlying this relationship is poorly understood. Here, we report multiple lines of evidence that CMT3 interacts with H3K9me2-containing nucleosomes. CMT3 genome locations nearly perfectly correlated with H3K9me2, and CMT3 stably associated with H3K9me2-containing nucleosomes. Crystal structures of maize CMT3 homolog ZMET2, in complex with H3K9me2 peptides, showed that ZMET2 binds H3K9me2 via both bromo adjacent homology (BAH) and chromo domains. The structures reveal an aromatic cage within both BAH and chromo domains as interaction interfaces that capture H3K9me2. Mutations that abolish either interaction disrupt CMT3 binding to nucleosomes and show a complete loss of CMT3 activity in vivo. Our study establishes dual recognition of H3K9me2 marks by BAH and chromo domains and reveals a distinct mechanism of interplay between DNA methylation and histone modification.


Asunto(s)
Arabidopsis/metabolismo , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN , ADN de Plantas/metabolismo , Nucleosomas/metabolismo , Zea mays/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Cristalografía por Rayos X , ADN (Citosina-5-)-Metiltransferasas/química , Heterocromatina/metabolismo , Histonas/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Alineación de Secuencia , Zea mays/genética
12.
Biochemistry ; 51(5): 1009-19, 2012 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-22229759

RESUMEN

5-Hydroxymethylcytosine (5-hmC) is an enzymatic oxidative product of 5-methylcytosine (5-mC). The Ten Eleven Translocation (TET) family of enzymes catalyze the conversion of 5-mC to 5-hmC. Phage-encoded glucosyltransferases are known to glucosylate 5-hmC, which can be utilized to detect and analyze the 5-hmC as an epigenetic mark in the mammalian epigenome. Here we have performed a detailed biochemical characterization and steady-state kinetic parameter analysis of T4 phage ß-glucosyltransferase (ß-GT). Recombinant ß-GT glucosylates 5-hmC DNA in a nonprocessive manner, and binding to either 5-hmC DNA or uridine diphosphoglucose (UDP-glucose) substrates is random, with both binary complexes being catalytically competent. Product inhibition studies with ß-GT demonstrated that UDP is a competitive inhibitor with respect to UDP-glucose and a mixed inhibitor with respect to 5-hmC DNA. Similarly, the glucosylated-5-hmC (5-ghmC) DNA is a competitive inhibitor with respect to 5-hmC DNA and mixed inhibitor with respect to UDP-glucose. 5-hmC DNA binds ~10 fold stronger to the ß-GT enzyme when compared to its glucosylated product. The numbers of 5-hmC on target sequences influenced the turnover numbers for recombinant ß-GT. Furthermore, we have utilized recombinant ß-GT to estimate global 5-hmC content in a variety of genomic DNAs. Most of the genomic DNAs derived from vertebrate tissue and cell lines contained 5-hmC. DNA from mouse, human, and bovine brains displayed 0.5-0.9% of the total nucleotides as 5-hmC, which was higher compared to the levels found in other tissues. A comparison between cancer and healthy tissue genomes suggested a lower percentage of 5-hmC in cancer, which may reflect the global hypomethylation of 5-mC observed during oncogenesis.


Asunto(s)
Citosina/análogos & derivados , Glucosiltransferasas/química , 5-Metilcitosina/análogos & derivados , Animales , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Bacteriófago T4/enzimología , Bovinos , Citosina/química , Desoxirribonucleasas de Localización Especificada Tipo II/química , Desoxirribonucleasas de Localización Especificada Tipo II/genética , Escherichia coli/enzimología , Escherichia coli/virología , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Femenino , Genoma de Planta/genética , Genoma Viral/genética , Glucosiltransferasas/antagonistas & inhibidores , Glucosiltransferasas/genética , Células HCT116 , Células HEK293 , Humanos , Masculino , Ratones , Células 3T3 NIH , Ratas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Especificidad por Sustrato/genética
13.
J Biol Chem ; 286(42): 36215-27, 2011 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-21873430

RESUMEN

Phosphatidylinositol (PI) 3-kinase/Akt signaling plays a critical role in cell proliferation and survival, partly by regulation of FoxO transcription factors. Previous work using global expression profiling indicated that inhibition of PI 3-kinase in proliferating cells led to induction of genes that promote cell cycle arrest and apoptosis. The upstream regulatory regions of these genes had binding sites not only for FoxO, but also for Myc/Max transcription factors. In the present study, we have addressed the role of Myc family members and related E-box-binding proteins in the regulation of these genes. Chromatin immunoprecipitations and RNA interference indicated that transcription was repressed by Max-Mnt-Sin3a-histone deacetylase complexes in proliferating cells. Inhibition of PI 3-kinase led to a loss of Max/Mnt binding and transcriptional induction by MITF and USF1, as well as FoxO. Both MITF and USF1 were activated by glycogen synthase kinase (GSK) 3, with GSK3 phosphorylation sites on USF1 identified as the previously described activating site threonine 153 as well as serine 186. siRNA against MITF as well as against FoxO3a protected cells from apoptosis following PI 3-kinase inhibition. These results define a novel E-box-regulated network that functions coordinately with FoxO to regulate transcription of apoptotic and cell cycle regulatory genes downstream of PI 3-kinase/Akt/GSK3 signaling.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/biosíntesis , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Ciclo Celular/fisiología , Factores de Transcripción Forkhead/metabolismo , Regulación de la Expresión Génica/fisiología , Glucógeno Sintasa Quinasa 3/metabolismo , Factor de Transcripción Asociado a Microftalmía/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/fisiología , Factores Estimuladores hacia 5'/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Línea Celular Tumoral , Factores de Transcripción Forkhead/genética , Glucógeno Sintasa Quinasa 3/genética , Humanos , Factor de Transcripción Asociado a Microftalmía/genética , Fosfatidilinositol 3-Quinasas/genética , Fosforilación/fisiología , Proteínas Proto-Oncogénicas c-akt/genética , ARN Interferente Pequeño/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Complejo Correpresor Histona Desacetilasa y Sin3 , Transcripción Genética/fisiología , Factores Estimuladores hacia 5'/genética
14.
Mol Cell Biol ; 30(22): 5295-305, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20855526

RESUMEN

Control of gene expression by the phosphatidylinositol (PI) 3-kinase/Akt pathway plays an important role in mammalian cell proliferation and survival, and numerous transcription factors and genes regulated by PI 3-kinase signaling have been identified. Because steady-state levels of mRNA are regulated by degradation as well as transcription, we have investigated the importance of mRNA degradation in controlling gene expression downstream of PI 3-kinase. We previously performed global expression analyses that identified a set of approximately 50 genes that were downregulated following inhibition of PI 3-kinase in proliferating T98G cells. By blocking transcription with actinomycin D, we found that almost 40% of these genes were regulated via effects of PI 3-kinase on mRNA stability. Analyses of ß-globin-3' untranslated region (UTR) fusion transcripts indicated that sequences within 3' UTRs were the primary determinants of rapid mRNA decay. Small interfering RNA (siRNA) experiments further showed that knockdown of BRF1 or KSRP, both ARE binding proteins (ARE-BPs) regulated by Akt, stabilized the mRNAs of a majority of the downregulated genes but that knockdown of ARE-BPs that are not regulated by PI 3-kinase did not affect degradation of these mRNAs. These results show that PI 3-kinase regulation of mRNA stability, predominantly mediated by BRF1, plays a major role in regulating gene expression.


Asunto(s)
Regulación de la Expresión Génica , Fosfatidilinositol 3-Quinasa/metabolismo , Estabilidad del ARN , Transducción de Señal/fisiología , Regiones no Traducidas 3' , Animales , Línea Celular , Perfilación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Datos de Secuencia Molecular , Fosfatidilinositol 3-Quinasa/genética , Inhibidores de las Quinasa Fosfoinosítidos-3 , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Factores Asociados con la Proteína de Unión a TATA/genética , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Transactivadores/genética , Transactivadores/metabolismo
15.
BMC Cell Biol ; 9: 6, 2008 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-18226221

RESUMEN

BACKGROUND: Phosphatidylinositol (PI) 3-kinase is activated by a variety of growth factor receptors and the PI 3-kinase/Akt signaling pathway is a key regulator of cell proliferation and survival. The downstream targets of PI 3-kinase/Akt signaling include direct regulators of cell cycle progression and apoptosis as well as a number of transcription factors. Growth factor stimulation of quiescent cells leads to robust activation of PI 3-kinase, induction of immediate-early genes, and re-entry into the cell cycle. A lower level of PI 3-kinase signaling is also required for the proliferation and survival of cells maintained in the presence of growth factors, but the gene expression program controlled by PI 3-kinase signaling in proliferating cells has not been elucidated. RESULTS: We used microarray analyses to characterize the changes in gene expression resulting from inhibition of PI 3-kinase in proliferating cells. The genes regulated by inhibition of PI 3-kinase in proliferating cells were distinct from genes induced by growth factor stimulation of quiescent cells and highly enriched in genes that regulate programmed cell death. Computational analyses followed by chromatin immunoprecipitations demonstrated FOXO binding to both previously known and novel sites in promoter regions of approximately one-third of the up-regulated genes, consistent with activation of FOXO1 and FOXO3a in response to inhibition of PI 3-kinase. NFkappaB binding sites were similarly identified in promoter regions of over one-third of the down-regulated genes. RelB was constitutively bound to promoter regions in cells maintained in serum, however binding decreased following PI 3-kinase inhibition, indicating that PI 3-kinase signaling activates NFkappaB via the non-canonical pathway in proliferating cells. Approximately 70% of the genes targeted by FOXO and NFkappaB regulate cell proliferation and apoptosis, including several regulators of apoptosis that were not previously known to be targeted by these transcription factors. CONCLUSION: PI 3-kinase signaling in proliferating cells regulates a novel transcriptional program that is highly enriched in genes that regulate apoptosis. At least one-third of these genes are regulated either by FOXO transcription factors, which are activated following PI 3-kinase inhibition, or by RelB, which is activated by PI 3-kinase via the non-canonical pathway in proliferating cells.


Asunto(s)
Apoptosis/genética , Proliferación Celular , Factores de Transcripción Forkhead/antagonistas & inhibidores , FN-kappa B/metabolismo , Fosfatidilinositol 3-Quinasas/fisiología , Transcripción Genética , Apoptosis/efectos de los fármacos , Sitios de Unión , Proliferación Celular/efectos de los fármacos , Cromonas/farmacología , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Morfolinas/farmacología , Análisis de Secuencia por Matrices de Oligonucleótidos , Inhibidores de las Quinasa Fosfoinosítidos-3 , Unión Proteica , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Transducción de Señal/fisiología , Factores de Transcripción/metabolismo , Transcripción Genética/efectos de los fármacos , Células Tumorales Cultivadas , Células U937
16.
Genes Dev ; 16(2): 245-56, 2002 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-11799067

RESUMEN

The E2F transcription factor family is known to play a key role in the timely expression of genes required for cell cycle progression and proliferation, but only a few E2F target genes have been identified. We explored the possibility that E2F regulators play a broader role by identifying additional genes bound by E2F in living human cells. A protocol was developed to identify genomic binding sites for DNA-binding factors in mammalian cells that combines immunoprecipitation of cross-linked protein-DNA complexes with DNA microarray analysis. Among approximately 1200 genes expressed during cell cycle entry, we found that the promoters of 127 were bound by the E2F4 transcription factor in primary fibroblasts. A subset of these targets was also bound by E2F1. Most previously identified target genes known to have roles in DNA replication and cell cycle control and represented on the microarray were confirmed by this analysis. We also identified a remarkable cadre of genes with no previous connection to E2F regulation, including genes that encode components of the DNA damage checkpoint and repair pathways, as well as factors involved in chromatin assembly/condensation, chromosome segregation, and the mitotic spindle checkpoint. Our data indicate that E2F directly links cell cycle progression with the coordinate regulation of genes essential for both the synthesis of DNA as well as its surveillance.


Asunto(s)
Proteínas de Ciclo Celular , Reparación del ADN/fisiología , Replicación del ADN/fisiología , Proteínas de Unión al ADN , Fase G2/fisiología , Mitosis/fisiología , Factores de Transcripción/fisiología , Daño del ADN , Factores de Transcripción E2F , Factor de Transcripción E2F1 , Factor de Transcripción E2F4 , Perfilación de la Expresión Génica , Humanos , Pruebas de Precipitina , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...