Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Immunol Res ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38842647

RESUMEN

The NLRP3 receptor can assemble inflammasome platforms to trigger inflammatory responses; however, accumulating evidence suggests that it can also display anti-inflammatory properties. Here, we explored the role of nucleotide-binding oligomerization domain pyrin-containing protein 3 (NLRP3) in Taenia crassiceps experimental infection, which requires immune polarization into a Th2-type profile and peritoneal influx of suppressive macrophages for successful colonization. NLRP3 deficient mice (NLRP3-/-) were highly resistant against T. crassiceps, relative to wild-type (WT) mice. Resistance in NLRP3-/- mice was associated with a diminished IL-4 output, high levels of IL-15, growth factor for both innate and adaptive lymphocytes, and a dramatic decrease in peritoneum-infiltrating suppressive macrophages. Also, a transcriptional analysis on bone marrow-derived macrophages exposed to Taenia-secreted antigens and IL-4 revealed that NLRP3-/- macrophages express reduced transcripts of relm-α and PD-1 ligands, markers of alternative activation and suppressive ability, respectively. Finally, we found that the resistance displayed by NLRP3-/- mice is transferred through intestinal microbiota exchange, since WT mice co-housed with NLRP3-/- mice were significantly more resistant than WT animals preserving their native microbiota. Altogether, these data demonstrate that NLRP3 is a component of innate immunity required for T. crassiceps to establish, most likely contributing to macrophage recruitment, and controlling lymphocyte-stimulating cytokines such as IL-15.

2.
Inflammation ; 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38700792

RESUMEN

In vitro induced T regulatory cells (iTregs) are promising for addressing inflammation-driven diseases. However, current protocols for the generation and expansion of iTregs fail to induce extensive demethylation of the Treg-specific demethylated region (TSDR) within the FOXP3 gene, recognized as the master regulator for regulatory T cells (Tregs). This deficiency results in the rapid loss of Foxp3 expression and an unstable regulatory phenotype. Nevertheless, inhibition of STAT6 signaling effectively stabilizes Foxp3 expression in iTregs. Thus, this study aimed to develop a protocol combining epigenetic editing with STAT6 deficiency to improve iTregs' ability to maintain stable suppressive function and a functional phenotype. Our findings demonstrate that the combination of STAT6 deficiency (STAT6-/-) with targeted demethylation of the TSDR using a CRISPR-TET1 tool leads to extensive demethylation of FOXP3-TSDR. Demethylation in STAT6-/- iTregs was associated with enhanced expression of Foxp3 and suppressive markers such as CTLA-4, PD-1, IL-10, and TGF-ß. Furthermore, the edited STAT6-/- iTregs exhibited an increased capacity to suppress CD8+ and CD4+ lymphocytes and could more efficiently impair Th1-signature gene expression compared to conventional iTregs. In conclusion, the deactivation of STAT6 and TSDR-targeted demethylation via CRISPR-TET1 is sufficient to induce iTregs with heightened stability and increased suppressive capacity, offering potential applications against inflammatory and autoimmune diseases.

3.
World J Gastrointest Oncol ; 16(5): 1705-1724, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38764833

RESUMEN

Colorectal cancer (CRC) remains one of the most commonly diagnosed and deadliest types of cancer worldwide. CRC displays a desmoplastic reaction (DR) that has been inversely associated with poor prognosis; less DR is associated with a better prognosis. This reaction generates excessive connective tissue, in which cancer-associated fibroblasts (CAFs) are critical cells that form a part of the tumor microenvironment. CAFs are directly involved in tumorigenesis through different mechanisms. However, their role in immunosuppression in CRC is not well understood, and the precise role of signal transducers and activators of transcription (STATs) in mediating CAF activity in CRC remains unclear. Among the myriad chemical and biological factors that affect CAFs, different cytokines mediate their function by activating STAT signaling pathways. Thus, the harmful effects of CAFs in favoring tumor growth and invasion may be modulated using STAT inhibitors. Here, we analyze the impact of different STATs on CAF activity and their immunoregulatory role.

4.
Biomed Pharmacother ; 175: 116628, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38663106

RESUMEN

Colorectal cancer (CRC) is one of the most prevalent fatal neoplasias worldwide. Despite efforts to improve the early diagnosis of CRC, the mortality rate of patients is still nearly 50%. The primary treatment strategy for CRC is surgery, which may be accompanied by chemotherapy and radiotherapy. The conventional and first-line chemotherapeutic agent utilized is 5-fluorouracil (5FU). However, it has low efficiency. Combination treatment with leucovorin and oxaliplatin or irinotecan improves the effectiveness of 5FU therapy. Unfortunately, most patients develop drug resistance, leading to disease progression. Here, we evaluated the effect of a potential alternative adjuvant treatment for 5FU, helminth-derived Taenia crassiceps (TcES) molecules, on treating advanced colitis-associated colon cancer. The use of TcES enhanced the effects of 5FU on established colonic tumors by downregulating the expression of the immunoregulatory cytokines, Il-10 and Tgf-ß, and proinflammatory cytokines, Tnf-α and Il-17a, and reducing the levels of molecular markers associated with malignancy, cyclin D1, and Ki67, both involved in apoptosis inhibition and the signaling pathway of ß-catenin. TcES+5FU therapy promoted NK cell recruitment and the release of Granzyme B1 at the tumor site, consequently inducing tumor cell death. Additionally, it restored P53 activity which relates to decreased Mdm2 expression. In vitro assays with human colon cancer cell lines showed that therapy with TcES+5FU significantly reduced cell proliferation and migration by modulating the P53 and P21 signaling pathways. Our findings demonstrate, for the first time in vivo, that helminth-derived excreted/secreted products may potentiate the effect of 5FU on established colon tumors.


Asunto(s)
Fluorouracilo , Animales , Fluorouracilo/farmacología , Fluorouracilo/uso terapéutico , Taenia/efectos de los fármacos , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/patología , Apoptosis/efectos de los fármacos , Citocinas/metabolismo , Ratones , Humanos , Línea Celular Tumoral , Carcinogénesis/efectos de los fármacos , Granzimas/metabolismo , Proliferación Celular/efectos de los fármacos , Ratones Endogámicos BALB C
5.
Pathogens ; 13(2)2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38392907

RESUMEN

To determine the role that the IL-4/IL13 receptor plays in the development of alternatively activated macrophages (AAM or M2) and their role in the regulation of immunity to the extraintestinal phase of the helminth parasite Taenia crassiceps, we followed the infection in a mouse strain lacking the IL-4Rα gene (IL-4Rα-/-) and in the macrophage/neutrophil-specific IL-4Rα-deficient mouse strain (LysMcreIL-4Rα-/lox or cre/LoxP). While 100% of T. crassiceps-infected IL-4Rα+/+ (WT) mice harbored large parasite loads, more than 50% of th eIL-4Rα-/- mice resolved the infection. Approximately 88% of the LysMcreIL-4Rα-/lox mice displayed a sterilizing immunity to the infection. The remaining few infected cre/LoxP mice displayed the lowest number of larvae in their peritoneal cavity. The inability of the WT mice to control the infection was associated with antigen-specific Th2-type responses with higher levels of IgG1, IL-4, IL-13, and total IgE, reduced NO production, and increased arginase activity. In contrast, IL-4Rα-/- semi-resistant mice showed a Th1/Th2 combined response. Furthermore, macrophages from the WT mice displayed higher transcripts for Arginase-1 and RELM-α, as well as increased expression of PD-L2 with robust suppressive activity over anti-CD3/CD28 stimulated T cells; all of these features are associated with the AAM or M2 macrophage phenotype. In contrast, both the IL-4Rα-/- and LysMcreIL-4Rα-/lox mice did not fully develop AAM or display suppressive activity over CD3/CD28 stimulated T cells, reducing PDL2 expression. Additionally, T-CD8+ but no T-CD4+ cells showed a suppressive phenotype with increased Tim-3 and PD1 expression in WT and IL-4Rα-/-, which were absent in T. crassiceps-infected LysMcreIL-4Rα-/lox mice. These findings demonstrate a critical role for the IL-4 signaling pathway in sustaining AAM and its suppressive activity during cysticercosis, suggesting a pivotal role for AAM in favoring susceptibility to T. crassiceps infection. Thus, the absence of these suppressor cells is one of the leading mechanisms to control experimental cysticercosis successfully.

6.
World J Gastrointest Oncol ; 15(2): 251-267, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36908325

RESUMEN

Colorectal cancer (CRC) is among the most prevalent and deadly neoplasms worldwide. According to GLOBOCAN predictions, its incidence will increase from 1.15 million CRC cases in 2020 to 1.92 million cases in 2040. Therefore, a better understanding of the mechanisms involved in CRC development is necessary to improve strategies focused on reducing the incidence, prevalence, and mortality of this oncological pathology. Surgery, chemotherapy, and radiotherapy are the main strategies for treating CRC. The conventional chemotherapeutic agent utilized throughout the last four decades is 5-fluorouracil, notwithstanding its low efficiency as a single therapy. In contrast, combining 5-fluorouracil therapy with leucovorin and oxaliplatin or irinotecan increases its efficiency. However, these treatments have limited and temporary solutions and aggressive side effects. Additionally, most patients treated with these regimens develop drug resistance, which leads to disease progression. The immune response is considered a hallmark of cancer; thus, the use of new strategies and methodologies involving immune molecules, cells, and transcription factors has been suggested for CRC patients diagnosed in stages III and IV. Despite the critical advances in immunotherapy, the development and impact of immune checkpoint inhibitors on CRC is still under investigation because less than 25% of CRC patients display an increased 5-year survival. The causes of CRC are diverse and include modifiable environmental factors (smoking, diet, obesity, and alcoholism), individual genetic mutations, and inflammation-associated bowel diseases. Due to these diverse causes, the solutions likely cannot be generalized. Interestingly, new strategies, such as single-cell multiomics, proteomics, genomics, flow cytometry, and massive sequencing for tumor microenvironment analysis, are beginning to clarify the way forward. Thus, the individual mechanisms involved in developing the CRC microenvironment, their causes, and their consequences need to be understood from a genetic and immunological perspective. This review highlighted the importance of altering the immune response in CRC. It focused on drugs that may modulate the immune response and show specific efficacy and contrasted with evidence that immunosuppression or the promotion of the immune response is the answer to generating effective treatments with combined chemotherapeutic drugs.

7.
Eur J Immunol ; 53(5): e2250128, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36785881

RESUMEN

Signal transducer and activator of transcription 6 (STAT6) promotes tumorigenesis by decreasing the Forkhead box P3+ (Foxp3+) cell frequency allowing for the infiltration of inflammatory cells during the early stages of colitis-associated cancer (CAC). In this study, we dissected the role of STAT6 in the generation of inducible in vitro regulatory T cells (iTregs) and peripheral in vivo Tregs (pTregs) under inflammatory conditions. In in vitro assays, when STAT6 was lacking, iTregs preserved a stable phenotype and expressed high levels of Foxp3 and CD25 during long expansion periods, even in the presence of IL-6. This effect was associated with increased in vitro suppressive ability, over-expression of programmed death-1 (PD-1), CTLA-4, and Foxp3, and decreased IFN-γ expression. Furthermore, iTregs developed during STAT6 deficiency showed a higher demethylation status for the FOXP3 Treg-specific demethylated region (TSDR), coupled with lower DNA methyltransferase 1 (DNMT1) mRNA expression, suggesting that STAT6 may lead to Foxp3 silencing. Using a mouse model of CAC, the STAT6-/- pTregs expressed a more activated phenotype at the intestine, had higher suppressive capacity, and expressed more significant levels of PD-1 and latency-associated peptide of TGF-ß (LAP) associated with their ability to attenuate tumor development. These data suggest that STAT6 signaling impairs the induction, stability, and suppressive capacity of Tregs developed in vitro or in vivo during gut inflammation.


Asunto(s)
Receptor de Muerte Celular Programada 1 , Linfocitos T Reguladores , Linfocitos T Reguladores/metabolismo , Factor de Transcripción STAT6/genética , Factor de Transcripción STAT6/metabolismo , Receptor de Muerte Celular Programada 1/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Factores de Transcripción Forkhead/metabolismo
8.
Int J Mol Sci ; 24(3)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36768437

RESUMEN

In 2013, recognizing that Colorectal Cancer (CRC) is the second leading cause of death by cancer worldwide and that it was a neglected disease increasing rapidly in Mexico, the community of researchers at the Biomedicine Research Unit of the Facultad de Estudios Superiores Iztacala from the Universidad Nacional Autónoma de México (UNAM) established an intramural consortium that involves a multidisciplinary group of researchers, technicians, and postgraduate students to contribute to the understanding of this pathology in Mexico. This article is about the work developed by the Mexican Colorectal Cancer Research Consortium (MEX-CCRC): how the Consortium was created, its members, and its short- and long-term goals. Moreover, it is a narrative of the accomplishments of this project. Finally, we reflect on possible strategies against CRC in Mexico and contrast all the data presented with another international strategy to prevent and treat CRC. We believe that the Consortium's characteristics must be maintained to initiate a national strategy, and the reported data could be useful to establish future collaborations with other countries in Latin America and the world.


Asunto(s)
Neoplasias Colorrectales , Estudiantes , Humanos , México , Estudios Interdisciplinarios , Terapias en Investigación , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/terapia
9.
Pathogens ; 12(1)2023 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-36678452

RESUMEN

Trypanosoma cruzi is the etiologic agent of Chagas disease, a parasitic disease of great medical importance on the American continent. Trypomastigote infection's initial step in a mammalian host is vital for the parasite's life cycle. A trypomastigote's surface presents many molecules, some of which have been proposed to be involved in the infection process, including a glycoprotein family called mucin-associated surface proteins (MASPs). This work describes a 49-kDa molecule (MASP49) that belongs to this family and is expressed mainly on the surfaces of amastigotes and trypomastigotes but can be found in extracts and the membrane-enriched fractions of epimastigotes. This protein is partially GPI-anchored to the surface and has a role during the internalization process, since its blockade with specific antibodies decreases parasite entry into Vero cells by 62%. This work shows that MASP49 binds to peritoneal macrophages and rat cardiomyocytes, undergoes glycosylation via galactose N-acetylgalactosamine, and can attach to the macrophage murine C-type lectin receptor (mMGL). These results suggest that MASP49 can be considered a virulence factor in T. cruzi, and a better understanding of its role in the infection process is necessary.

10.
Exp Parasitol ; 242: 108400, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36208837

RESUMEN

The effects of administration of four different fractions of T. hydatigena larvae vesicular concentrate (ThLVC) prior to immunization with ovalbumin (OVA) in rats on different parameters of the immune response were evaluated. The amount of anti-OVA IgG by ELISA, amount of blood eosinophils (BE), percentage of cell subpopulations by flow cytometry (CD3+/CD4+, CD3+/CD8+, CD3-/CD45RA+, and CD11b/c+), and production of serum cytokines by bead-based immunoassays (IL-2, IL-4, INFγ, IL-5, TNFα, GM-CSF, IL-17F, IL-17A IL-13, IL-22, and IL-6) were measured. Rats receiving total-ThLVC (p ≤ 0.05) and fraction ThLVC30-100 kDa (p < 0.001) prior to OVA administration produced higher amounts of anti-OVA IgG than rats receiving OVA alone. Rats that were only administered with OVA showed a strong increase in BE that was significantly correlated (r = 0.72, p < 0.001) with an increase in IL-5 in the blood. However, rats that received any of the ThLVC fractions prior to administration of OVA did not show these increases. In general, administration of ThLVC30-100 kDa prior to administration of OVA increased (p < 0.05) the percentage of B, CD4, and CD8 lymphocytes in the spleen and mesenteric lymph nodes. Rats that received ThLVC total fraction and OVA showed an increase (p < 0.05) in IL-2, IL17F, and IL22. The results of this study show that total-ThLVC and ThLVC30-100 kDa modify the immune response of rats in differentiated ways. Our observations suggests that both fractions of ThLVC have the potential to be used as adjuvants.


Asunto(s)
Citocinas , Taenia , Ratas , Animales , Ovalbúmina , Factor Estimulante de Colonias de Granulocitos y Macrófagos , Interleucina-17 , Interleucina-13 , Factor de Necrosis Tumoral alfa , Interleucina-5 , Interleucina-2 , Interleucina-4 , Larva , Interleucina-6 , Inmunoglobulina G
11.
Pathogens ; 11(7)2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35890055

RESUMEN

Notwithstanding that most biomedical research today focuses on the pandemic caused by the SARs-CoV-2 virus, there are many unresolved diseases that are almost forgotten worldwide [...].

12.
Int J Mol Sci ; 22(20)2021 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-34681866

RESUMEN

A close connection between inflammation and the risk of developing colon cancer has been suggested in the last few years. It has been estimated that patients diagnosed with some types of inflammatory bowel disease, such as ulcerative colitis or Crohn's disease, have up to a 30% increased risk of developing colon cancer. However, there is also evidence showing that the activation of anti-inflammatory pathways, such as the IL-4 receptor-mediated pathway, may favor the development of colon tumors. Using an experimental model of colitis-associated colon cancer (CAC), we found that the decrease in tumor development in global IL4Rα knockout mice (IL4RαKO) was apparently associated with an inflammatory response mediated by the infiltration of M1 macrophages (F480+TLR2+STAT1+) and iNOS expression in colon tissue. However, when we developed mice with a specific deletion of IL4Rα in macrophages (LysMcreIL4Rα-/lox mice) and subjected them to CAC, it was found that despite presenting a large infiltration of M1 macrophages into the colon, these mice were as susceptible to colon-tumorigenesis as WT mice. These data suggest that in the tumor microenvironment the absence of IL4Rα expression on macrophages, as well as the recruitment of M1 macrophages, may not be directly associated with resistance to developing colon tumors. Therefore, it is possible that IL4Rα expression in other cell types, such as colonic epithelial cells, could have an important role in promoting the development of colitis-associated colon tumorigenesis.


Asunto(s)
Colitis/patología , Neoplasias del Colon/patología , Macrófagos/patología , Receptores de Superficie Celular/genética , Animales , Neoplasias del Colon/etiología , Neoplasias del Colon/genética , Citocinas/metabolismo , Femenino , Macrófagos/fisiología , Ratones Endogámicos BALB C , Ratones Noqueados , Ratones Transgénicos , Neoplasias Experimentales , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Receptores de Superficie Celular/metabolismo , Macrófagos Asociados a Tumores/patología
13.
Pathogens ; 10(10)2021 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-34684235

RESUMEN

Signal Transducer and Activator of Transcription (STAT) 1 signaling is critical for IFN-γ-mediated immune responses and resistance to protozoan and viral infections. However, its role in immunoregulation during helminth parasitic infections is not fully understood. Here, we used STAT1-/- mice to investigate the role of this transcription factor during a helminth infection caused by the cestode Taenia crassiceps and show that STAT1 is a central molecule favoring susceptibility to this infection. STAT1-/- mice displayed lower parasite burdens at 8 weeks post-infection compared to STAT1+/+ mice. STAT1 mediated the recruitment of inflammatory monocytes and the development of alternatively activated macrophages (M2) at the site of infection. The absence of STAT1 prevented the recruitment of CD11b+Ly6ChiLy6G- monocytic cells and therefore their suppressive activity. This failure was associated with the defective expression of CCR2 on CD11b+Ly6ChiLy6G- cells. Importantly, CD11b+Ly6ChiLy6G- cells highly expressed PDL-1 and suppressed T-cell proliferation elicited by anti-CD3 stimulation. PDL-1+ cells were mostly absent in STAT1-/- mice. Furthermore, only STAT1+/+ mice developed M2 macrophages at 8 weeks post-infection, although macrophages from both T. crassiceps-infected STAT1+/+ and STAT1-/- mice responded to IL-4 in vitro, and both groups of mice were able to produce the Th2 cytokine IL-13. This suggests that CD11b+CCR2+Ly6ChiLy6G- cells give rise to M2 macrophages in this infection. In summary, a lack of STAT1 resulted in impaired recruitment of CD11b+CCR2+Ly6ChiLy6G- cells, failure to develop M2 macrophages, and increased resistance against T. crassiceps infection.

14.
Int J Mol Sci ; 22(14)2021 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-34299314

RESUMEN

Signal transducer and activator of transcription 1 (STAT1) acts as a tumor suppressor molecule in colitis-associated colorectal cancer (CAC), particularly during the very early stages, modulating immune responses and controlling mechanisms such as apoptosis and cell proliferation. Previously, using an experimental model of CAC, we reported increased intestinal cell proliferation and faster tumor development, which were consistent with more signs of disease and damage, and reduced survival in STAT1-/- mice, compared with WT counterparts. However, the mechanisms through which STAT1 might prevent colorectal cancer progression preceded by chronic inflammation are still unclear. Here, we demonstrate that increased tumorigenicity related to STAT1 deficiency could be suppressed by IL-17 neutralization. The blockade of IL-17 in STAT1-/- mice reduced the accumulation of CD11b+Ly6ClowLy6G+ cells resembling granulocytic myeloid-derived suppressor cells (MDSCs) in both spleen and circulation. Additionally, IL-17 blockade reduced the recruitment of neutrophils into intestinal tissue, the expression and production of inflammatory cytokines, and the expression of intestinal STAT3. In addition, the anti-IL-17 treatment also reduced the expression of Arginase-1 and inducible nitric oxide synthase (iNOS) in the colon, both associated with the main suppressive activity of MDSCs. Thus, a lack of STAT1 signaling induces a significant change in the colonic microenvironment that supports inflammation and tumor formation. Anti-IL-17 treatment throughout the initial stages of CAC related to STAT1 deficiency abrogates the tumor formation possibly caused by myeloid cells.


Asunto(s)
Neoplasias Asociadas a Colitis/etiología , Granulocitos/patología , Interleucina-17/fisiología , Factor de Transcripción STAT1/fisiología , Animales , Anticuerpos Neutralizantes/administración & dosificación , Neoplasias Asociadas a Colitis/patología , Neoplasias Asociadas a Colitis/fisiopatología , Progresión de la Enfermedad , Femenino , Granulocitos/inmunología , Interleucina-17/antagonistas & inhibidores , Interleucina-17/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Células Supresoras de Origen Mieloide/inmunología , Células Supresoras de Origen Mieloide/patología , Neoplasias Experimentales/etiología , Neoplasias Experimentales/patología , Neoplasias Experimentales/fisiopatología , Factor de Transcripción STAT1/deficiencia , Factor de Transcripción STAT1/genética , Microambiente Tumoral/inmunología
15.
Int J Mol Sci ; 22(8)2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33919941

RESUMEN

Inflammation is the main driver of the tumor initiation and progression in colitis-associated colorectal cancer (CAC). Recent findings have indicated that the signal transducer and activator of transcription 6 (STAT6) plays a fundamental role in the early stages of CAC, and STAT6 knockout (STAT6-/-) mice are highly resistant to CAC development. Regulatory T (Treg) cells play a major role in coordinating immunomodulation in cancer; however, the role of STAT6 in the induction and function of Treg cells is poorly understood. To clarify the contribution of STAT6 to CAC, STAT6-/- and wild type (WT) mice were subjected to an AOM/DSS regimen, and the frequency of peripheral and local Treg cells was determined during the progression of CAC. When STAT6 was lacking, a remarkable reduction in tumor growth was observed, which was associated with decreased inflammation and an increased number of CD4+CD25+Foxp3+ cells in the colon, circulation, and spleen, including an over-expression of TGF-beta, IL-10, and Foxp3, compared to WT mice, during the early stages of CAC development. Conversely, WT mice showed an inverse frequency of Treg cells compared with STAT6-/- mice, which was followed by intestinal tumor formation. Increased mucosal inflammation, histological damage, and tumorigenesis were restored to levels observed in WT mice when an early inhibition/depletion of Treg cells was performed in STAT6-/- mice. Thus, with STAT6 deficiency, an increased number of Treg cells induce resistance against tumorigenesis, arresting tumor-promoting inflammation. We reported a direct role of STAT6 in the induction and function of Treg cells during CAC development and suggest that STAT6 is a potential target for the modulation of immune response in colitis and CAC.


Asunto(s)
Neoplasias Asociadas a Colitis/genética , Neoplasias Colorrectales/genética , Inflamación/genética , Factor de Transcripción STAT6/genética , Animales , Neoplasias Asociadas a Colitis/inmunología , Neoplasias Asociadas a Colitis/patología , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/patología , Modelos Animales de Enfermedad , Factores de Transcripción Forkhead/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Inflamación/inmunología , Inflamación/patología , Interleucina-10/genética , Ratones , Ratones Noqueados , Linfocitos T Reguladores/inmunología , Factor de Crecimiento Transformador beta/genética
17.
Cancers (Basel) ; 12(7)2020 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-32674255

RESUMEN

In recent years, there has been a significant increase in the study of own and foreign human factors favoring the development of different types of cancer, including genetic and environmental ones. However, the fact that the immune response plays a fundamental role in the development of immunity and susceptibility to colorectal cancer (CRC) is much stronger. Among the many cell populations of the immune system that participate in restricting or favoring CRC development, regulatory T cells (Treg) play a major role in orchestrating immunomodulation during CRC. In this review, we established concrete evidence supporting the fact that Treg cells have an important role in the promotion of tumor development during CRC, mediating an increasing suppressive capacity which controls the effector immune response, and generating protection for tumors. Furthermore, Treg cells go through a process called "phenotypic plasticity", where they co-express transcription factors that promote an inflammatory profile. We reunited evidence that describes the interaction between the different effector populations of the immune response and its modulation by Treg cells adapted to the tumor microenvironment, including the mechanisms used by Treg cells to suppress the protective immune response, as well as the different subpopulations of Treg cells participating in tumor progression, generating susceptibility during CRC development. Finally, we discussed whether Treg cells might or might not be a therapeutic target for an effective reduction in the morbidity and mortality caused by CRC.

18.
Mediators Inflamm ; 2020: 5062506, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32377161

RESUMEN

Cyrtocarpa procera is a plant used in traditional Mexican medicine to treat different gastrointestinal problems. Here, we investigated the effects of a C. procera methanolic extract in DSS-induced colitis mice. Ulcerative colitis (UC) was induced by administering 4% DSS in drinking water to female BALB/c mice. Compared to untreated mice with UC, the treatment group receiving the C. procera extract presented less severe UC symptoms of diarrhea, bleeding, and weight loss. Additionally, colon shortening was significantly reduced, and at the microscopic level, only minor damage was observed. Levels of proinflammatory cytokines such as TNF-α, IL-1ß, and IFNγ in serum as well as the MPO activity in the colon were significantly reduced in the C. procera methanolic extract-treated group. Moreover, the extract of C. procera reduced oxidative stress during UC, preventing the deterioration of the activity of antioxidant enzymes such as SOD, CAT, and GPx. Additionally, the extract decreased lipid peroxidation damage and its final products, such as malondialdehyde (MDA). In agreement with this, in vitro assays with the C. procera extract displayed good antioxidant capacity, probably due to the presence of polyphenolic compounds, in particular the flavonoids that were identified, such as chrysin, naringenin, kaempferol, and catechin, which have been reported to have anti-inflammatory and antioxidant activities. Therefore, the improvement of UC by the C. procera methanolic extract may be related to the action mechanisms of these compounds.


Asunto(s)
Anacardiaceae , Antiinflamatorios/uso terapéutico , Antioxidantes/uso terapéutico , Colitis Ulcerosa/tratamiento farmacológico , Extractos Vegetales/uso terapéutico , Anacardiaceae/química , Animales , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/patología , Colon/patología , Citocinas/análisis , Sulfato de Dextran , Femenino , Ratones , Ratones Endogámicos BALB C , Peroxidasa/metabolismo , Corteza de la Planta/química , Índice de Severidad de la Enfermedad
19.
Int J Mol Sci ; 21(6)2020 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-32244885

RESUMEN

Colorectal cancer (CRC) is one of the most widespread and deadly types of neoplasia around the world, where the inflammatory microenvironment has critical importance in the process of tumor growth, metastasis, and drug resistance. Despite its limited effectiveness, 5-fluorouracil (5-FU) is the main drug utilized for CRC treatment. The combination of 5-FU with other agents modestly increases its effectiveness in patients. Here, we evaluated the anti-inflammatory Trimethylglycine and the Signal transducer and activator of transcription (STAT6) inhibitor AS1517499, as possible adjuvants to 5-FU in already established cancers, using a model of colitis-associated colon cancer (CAC). We found that these adjuvant therapies induced a remarkable reduction of tumor growth when administrated together with 5-FU, correlating with a reduction in STAT6-phosphorylation. This reduction upgraded the effect of 5-FU by increasing both levels of apoptosis and markers of cell adhesion such as E-cadherin, whereas decreased epithelial-mesenchymal transition markers were associated with aggressive phenotypes and drug resistance, such as ß-catenin nuclear translocation and Zinc finger protein SNAI1 (SNAI1). Additionally, Il-10, Tgf-ß, and Il-17a, critical pro-tumorigenic cytokines, were downmodulated in the colon by these adjuvant therapies. In vitro assays on human colon cancer cells showed that Trimethylglycine also reduced STAT6-phosphorylation. Our study is relatively unique in focusing on the effects of the combined administration of AS1517499 and Trimethylglycine together with 5-FU on already established CAC which synergizes to markedly reduce the colon tumor load. Together, these data point to STAT6 as a valuable target for adjuvant therapy in colon cancer.


Asunto(s)
Adyuvantes Farmacéuticos/uso terapéutico , Carcinogénesis/patología , Colitis/complicaciones , Neoplasias del Colon/tratamiento farmacológico , Fluorouracilo/uso terapéutico , Glicina/uso terapéutico , Pirimidinas/uso terapéutico , Factor de Transcripción STAT6/metabolismo , Adyuvantes Farmacéuticos/farmacología , Animales , Apoptosis/efectos de los fármacos , Cadherinas/metabolismo , Moléculas de Adhesión Celular/metabolismo , Línea Celular Tumoral , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Supervivencia Celular/efectos de los fármacos , Colitis/patología , Neoplasias del Colon/etiología , Neoplasias del Colon/patología , Citocinas/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/patología , Femenino , Fluorouracilo/farmacología , Glicina/farmacología , Humanos , Inflamación/patología , Ratones Endogámicos BALB C , Monocitos/metabolismo , Fosforilación/efectos de los fármacos , Pirimidinas/farmacología , beta Catenina/metabolismo
20.
Cells ; 9(1)2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31906385

RESUMEN

Macrophage galactose-C type lectin (MGL)1 receptor is involved in the recognition of Trypanosoma cruzi (T. cruzi) parasites and is important for the modulation of the innate and adaptive immune responses. However, the mechanism by which MGL1 promotes resistance to T. cruzi remains unclear. Here, we show that MGL1 knockout macrophages (MGL1-/- Mφ) infected in vitro with T. cruzi were heavily parasitized and showed decreased levels of reactive oxygen species (ROS), nitric oxide (NO), IL-12 and TNF-α compared to wild-type macrophages (WT Mφ). MGL1-/- Mφ stimulated in vitro with T. cruzi antigen (TcAg) showed low expression of TLR-2, TLR-4 and MHC-II, which resulted in deficient splenic cell activation compared with similar co-cultured WT Mφ. Importantly, the activation of p-ERK1/2, p-c-Jun and p-NF-κB p65 were significantly reduced in MGL1-/- Mφ exposed to TcAg. Similarly, procaspase 1, caspase 1 and NLRP3 inflammasome also displayed a reduced expression that was associated with low IL-ß production. Our data reveal a previously unappreciated role for MGL1 in Mφ activation through the modulation of ERK1/2, c-Jun, NF-κB and NLRP3 signaling pathways, and to the development of protective innate immunity against experimental T. cruzi infection.


Asunto(s)
Asialoglicoproteínas/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Lectinas Tipo C/metabolismo , Activación de Macrófagos , Proteínas de la Membrana/metabolismo , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteínas Proto-Oncogénicas c-jun/metabolismo , Animales , Antígenos de Protozoos/metabolismo , Citocinas/biosíntesis , Mediadores de Inflamación/metabolismo , Linfocitos/inmunología , Masculino , Ratones Endogámicos C57BL , Óxido Nítrico/metabolismo , Parásitos/metabolismo , Proteínas Protozoarias/metabolismo , Estallido Respiratorio , Trypanosoma cruzi/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA