RESUMEN
PURPOSE: The blood-tumor barrier (BTB) limits irinotecan distribution in tumors of the central nervous system. However, given that the BTB has increased passive permeability we hypothesize that liposomal irinotecan would improve local exposure of irinotecan and its active metabolite SN-38 in brain metastases relative to conventional irinotecan due to enhanced-permeation and retention (EPR) effect. METHODS: Female nude mice were intracardially or intracranially implanted with human brain seeking breast cancer cells (brain metastases of breast cancer model). Mice were administered vehicle, non-liposomal irinotecan (50 mg/kg), liposomal irinotecan (10 mg/kg and 50 mg/kg) intravenously starting on day 21. Drug accumulation, tumor burden, and survival were evaluated. RESULTS: Liposomal irinotecan showed prolonged plasma drug exposure with mean residence time (MRT) of 17.7 ± 3.8 h for SN-38, whereas MRT was 3.67 ± 1.2 for non-liposomal irinotecan. Further, liposomal irinotecan accumulated in metastatic lesions and demonstrated prolonged exposure of SN-38 compared to non-liposomal irinotecan. Liposomal irinotecan achieved AUC values of 6883 ± 4149 ng-h/g for SN-38, whereas non-liposomal irinotecan showed significantly lower AUC values of 982 ± 256 ng-h/g for SN-38. Median survival for liposomal irinotecan was 50 days, increased from 37 days (p<0.05) for vehicle. CONCLUSIONS: Liposomal irinotecan accumulates in brain metastases, acts as depot for sustained release of irinotecan and SN-38, which results in prolonged survival in preclinical model of breast cancer brain metastasis.
Asunto(s)
Neoplasias Encefálicas/tratamiento farmacológico , Encéfalo/metabolismo , Irinotecán/farmacocinética , Inhibidores de Topoisomerasa I/farmacocinética , Neoplasias de la Mama Triple Negativas/patología , Animales , Encéfalo/patología , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/secundario , Línea Celular Tumoral , Femenino , Humanos , Inyecciones Intravenosas , Irinotecán/uso terapéutico , Liposomas , Ratones , Ratones Desnudos , Nanopartículas , Permeabilidad , Distribución Tisular , Inhibidores de Topoisomerasa I/uso terapéutico , Resultado del Tratamiento , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
BACKGROUND: Drug and antibody delivery to brain metastases has been highly debated in the literature. The blood-tumor barrier (BTB) is more permeable than the blood-brain barrier (BBB), and has shown to have highly functioning efflux transporters and barrier properties, which limits delivery of targeted therapies. METHODS: We characterized the permeability of 125I-trastuzumab in an in-vivo, and fluorescent trastuzumab-Rhodamine123 (t-Rho123) in a novel microfluidic in-vitro, BBB and BTB brain metastases of breast cancer model. In-vivo: Human MDA-MB-231-HER2+ metastatic breast cancer cells were grown and maintained under static conditions. Cells were harvested at 80% confluency and prepped for intra-cardiac injection into 20 homozygous female Nu/Nu mice. In-vitro: In a microfluidic device (SynVivo), human umbilical vein endothelial cells were grown and maintained under shear stress conditions in the outer compartment and co-cultured with CTX-TNA2 rat brain astrocytes (BBB) or Met-1 metastatic HER2+ murine breast cancer cells (BTB), which were maintained in the central compartment under static conditions. RESULTS: Tissue distribution of 125I-trastuzumab revealed only ~3% of injected dose reached normal brain, with ~5% of injected dose reaching brain tumors. No clear correlation was observed between size of metastases and the amount of 125I-trastuzumab localized in-vivo. This heterogeneity was paralleled in-vitro, where the distribution of t-Rho123 from the outer chamber to the central chamber of the microfluidic device was qualitatively and quantitatively analyzed over time. The rate of t-Rho123 linear uptake in the BBB (0.27 ± 0.33 × 104) and BTB (1.29 ± 0.93 × 104) showed to be significantly greater than 0 (p < 0.05). The BTB devices showed significant heterogenetic tendencies, as seen in in-vivo. CONCLUSIONS: This study is one of the first studies to measure antibody movement across the blood-brain and blood-tumor barriers, and demonstrates that, though in small and most likely not efficacious quantities, trastuzumab does cross the blood-brain and blood-tumor barriers.
RESUMEN
BACKGROUND: The lack of translatable in vitro blood-tumor barrier (BTB) models creates challenges in the development of drugs to treat tumors of the CNS and our understanding of how the vascular changes at the BBB in the presence of a tumor. METHODS: In this study, we characterize a novel microfluidic model of the BTB (and BBB model as a reference) that incorporates flow and induces shear stress on endothelial cells. Cell lines utilized include human umbilical vein endothelial cells co-cultured with CTX-TNA2 rat astrocytes (BBB) or Met-1 metastatic murine breast cancer cells (BTB). Cells were capable of communicating across microfluidic compartments via a porous interface. We characterized the device by comparing permeability of three passive permeability markers and one marker subject to efflux. RESULTS: The permeability of Sulforhodamine 101 was significantly (p < 0.05) higher in the BTB model (13.1 ± 1.3 × 10-3, n = 4) than the BBB model (2.5 ± 0.3 × 10-3, n = 6). Similar permeability increases were observed in the BTB model for molecules ranging from 600 Da to 60 kDa. The function of P-gp was intact in both models and consistent with recent published in vivo data. Specifically, the rate of permeability of Rhodamine 123 across the BBB model (0.6 ± 0.1 × 10-3, n = 4), increased 14-fold in the presence of the P-gp inhibitor verapamil (14.7 ± 7.5 × 10-3, n = 3) and eightfold with the addition of Cyclosporine A (8.8 ± 1.8 × 10-3, n = 3). Similar values were noted in the BTB model. CONCLUSIONS: The dynamic microfluidic in vitro BTB model is a novel commercially available model that incorporates shear stress, and has permeability and efflux properties that are similar to in vivo data.
Asunto(s)
Permeabilidad Capilar , Microfluídica/métodos , Modelos Cardiovasculares , Neoplasias/irrigación sanguínea , Neoplasias/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Animales , Astrocitos/metabolismo , Barrera Hematoencefálica/metabolismo , Línea Celular , Técnicas de Cocultivo , Difusión , Células Endoteliales de la Vena Umbilical Humana , Humanos , Cinética , Ratones , Modelos Neurológicos , RatasRESUMEN
PURPOSE: The ability of human melanotransferrin (hMTf) to carry a therapeutic concentration of trastuzumab (BTA) in the brain after conjugation (in the form of trastuzumab-melanotransferrin conjugate, BT2111 conjugate) was investigated by measuring the reduction of the number and size of metastatic human HER2+ breast cancer tumors in a preclinical model of brain metastases of breast cancer. METHODS: Human metastatic brain seeking breast cancer cells were injected in NuNu mice (n = 6-12 per group) which then developed experimental brain metastases. Drug uptake was analyzed in relation to metastasis size and blood-tumor barrier permeability. To investigate in-vivo activity against brain metastases, equimolar doses of the conjugate, and relevant controls (hMTf and BTA) in separate groups were administered biweekly after intracardiac injection of the metastatic cancer cells. RESULTS: The trastuzumab-melanotransferrin conjugate (BT2111) reduced the number of preclinical human HER2+ breast cancer metastases in the brain by 68% compared to control groups. Tumors which remained after treatment were 46% smaller than the control groups. In contrast, BTA alone had no effect on reducing number of metastases, and was associated with only a minimal reduction in metastasis size. CONCLUSIONS: The results suggest the novel trastuzumab-melanotransferrin conjugate (BT2111) may have utility in treating brain metastasis and validate hMTf as a potential vector for antibody transport across the Blood Brain Barrier (BBB).
Asunto(s)
Antineoplásicos/administración & dosificación , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias de la Mama/tratamiento farmacológico , Glicoproteínas de Membrana/química , Trastuzumab/administración & dosificación , Animales , Antineoplásicos/química , Antineoplásicos/farmacocinética , Barrera Hematoencefálica/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Neoplasias Encefálicas/secundario , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , Colorantes Fluorescentes/química , Xenoinjertos , Humanos , Ratones Desnudos , Imagen Óptica , Permeabilidad , Unión Proteica , Receptor ErbB-2/metabolismo , Trastuzumab/química , Trastuzumab/farmacocinéticaRESUMEN
BACKGROUND: Measurement of vascular density has significant value in characterizing healthy and diseased tissue, particularly in brain where vascular density varies among regions. Further, an understanding of brain vessel size helps distinguish between capillaries and larger vessels like arterioles and venules. Unfortunately, few cutting edge methodologies are available to laboratories to rapidly quantify vessel density. NEW METHOD: We developed a rapid microscopic method, which quantifies the numbers and diameters of blood vessels in brain. Utilizing this method we characterized vascular density of five brain regions in both mice and rats, in two tumor models, using three tracers. RESULTS: We observed the number of sections/mm(2) in various brain regions: genu of corpus callosum 161±7, hippocampus 266±18, superior colliculus 300±24, frontal cortex 391±55, and inferior colliculus 692±18 (n=5 animals). Regional brain data were not significantly different between species (p>0.05) or when using different tracers (70kDa and 2000kDa Texas Red; p>0.05). Vascular density decreased (62-79%) in preclinical brain metastases but increased (62%) a rat glioma model. COMPARISON WITH EXISTING METHODS: Our values were similar (p>0.05) to published literature. We applied this method to brain-tumors and observed brain metastases of breast cancer to have a â¼2.5-fold reduction (p>0.05) in vessels/mm(2) compared to normal cortical regions. In contrast, vascular density in a glioma model was significantly higher (sections/mm(2) 736±84; p<0.05). CONCLUSIONS: In summary, we present a vascular density counting method that is rapid, sensitive, and uses fluorescence microscopy without antibodies.
Asunto(s)
Encéfalo/irrigación sanguínea , Procesamiento de Imagen Asistido por Computador/métodos , Microscopía Fluorescente/métodos , Reconocimiento de Normas Patrones Automatizadas/métodos , Animales , Encéfalo/anatomía & histología , Encéfalo/patología , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Femenino , Glioma/patología , Humanos , Masculino , Ratones Transgénicos , Metástasis de la Neoplasia/patología , Ratas Endogámicas F344 , Ratas Sprague-DawleyRESUMEN
The blood-brain barrier (BBB) is compromised in brain metastases, allowing for enhanced drug permeation into brain. The extent and heterogeneity of BBB permeability in metastatic lesions is important when considering the administration of chemotherapeutics. Since permeability characteristics have been described in limited experimental models of brain metastases, we sought to define these changes in five brain-tropic breast cancer cell lines: MDA-MB-231BR (triple negative), MDA-MB-231BR-HER2, JIMT-1-BR3, 4T1-BR5 (murine), and SUM190 (inflammatory HER2 expressing). Permeability was assessed using quantitative autoradiography and fluorescence microscopy by co-administration of the tracers (14)C-aminoisobutyric acid (AIB) and Texas red conjugated dextran prior to euthanasia. Each experimental brain metastases model produced variably increased permeability to both tracers; additionally, the magnitude of heterogeneity was different among each model with the highest ranges observed in the SUM190 (up to 45-fold increase in AIB) and MDA-MB-231BR-HER2 (up to 33-fold in AIB) models while the lowest range was observed in the JIMT-1-BR3 (up to 5.5-fold in AIB) model. There was no strong correlation observed between lesion size and permeability in any of these preclinical models of brain metastases. Interestingly, the experimental models resulting in smaller mean metastases size resulted in shorter median survival while models producing larger lesions had longer median survival. These findings strengthen the evidence of heterogeneity in brain metastases of breast cancer by utilizing five unique experimental models and simultaneously emphasize the challenges of chemotherapeutic approaches to treat brain metastases.
Asunto(s)
Barrera Hematoencefálica/patología , Neoplasias Encefálicas/patología , Neoplasias de la Mama/patología , Animales , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/secundario , Neoplasias de la Mama/genética , Línea Celular Tumoral , Femenino , Humanos , Ratones , Permeabilidad , Receptor ErbB-2/biosíntesisRESUMEN
The observation that approximately 15% of women with disseminated breast cancer will develop symptomatic brain metastases combined with treatment guidelines discouraging single-agent chemotherapeutic strategies facilitates the desire for novel strategies aimed at outright brain metastasis prevention. Effective and robust preclinical methods to evaluate early-stage metastatic processes, brain metastases burden, and overall mean survival are lacking. Here, we develop a novel method to quantitate early metastatic events (arresting and extravasation) in addition to traditional end time-point parameters such as tumor burden and survival in an experimental mouse model of brain metastases of breast cancer. Using this method, a reduced number of viable brain-seeking metastatic cells (from 3,331 ± 263 cells/brain to 1,079 ± 495 cells/brain) were arrested in brain one week postinjection after TGFß knockdown. Treatment with a TGFß receptor inhibitor, galunisertib, reduced the number of arrested cells in brain to 808 ± 82 cells/brain. Furthermore, we observed a reduction in the percentage of extravasated cells (from 63% to 30%) compared with cells remaining intralumenal when TGFß is knocked down or inhibited with galunisertib (40%). The observed reduction of extravasated metastatic cells in brain translated to smaller and fewer brain metastases and resulted in prolonged mean survival (from 36 days to 62 days). This method opens up potentially new avenues of metastases prevention research by providing critical data important to early brain metastasis of breast cancer events.