Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Eur J Neurosci ; 59(7): 1585-1603, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38356120

RESUMEN

Parkinson's disease (PD) is characterized by the accumulation of misfolded alpha-synuclein (α-syn) protein, forming intraneuronal Lewy body (LB) inclusions. The α-syn preformed fibril (PFF) model of PD recapitulates α-syn aggregation, progressive nigrostriatal degeneration and motor dysfunction; however, little is known about the time course of PFF-induced alterations in basal and evoked dopamine (DA). In vivo microdialysis is well suited for identifying small changes in neurotransmitter levels over extended periods. In the present study, adult male Fischer 344 rats received unilateral, intrastriatal injections of either α-syn PFFs or phosphate-buffered saline (PBS). At 4 or 8 months post-injection (p.i.), animals underwent in vivo microdialysis to evaluate basal extracellular striatal DA and metabolite levels, local KCl-evoked striatal DA release and the effects of systemic levodopa (l-DOPA). Post-mortem analysis demonstrated equivalent PFF-induced reductions in tyrosine hydroxylase (TH) immunoreactive nigral neurons (~50%) and striatal TH (~20%) at both time points. Compared with reduction in striatal TH, reduction in striatal dopamine transporter (DAT) was more pronounced and progressed between the 4- and 8-month p.i. intervals (36% âž” 46%). Significant PFF-induced deficits in basal and evoked striatal DA, as well as deficits in motor performance, were not observed until 8 months p.i. Responses to l-DOPA did not differ regardless of PBS or PFF treatment. These results suggest that basal and evoked striatal DA are maintained for several months following PFF injection, with loss of both associated with motor dysfunction. Our studies provide insight into the time course and magnitude of PFF-induced extracellular dopaminergic deficits in the striatum.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Ratas , Masculino , Animales , alfa-Sinucleína/metabolismo , Dopamina/metabolismo , Levodopa/farmacología , Microdiálisis , Sustancia Negra/metabolismo , Enfermedad de Parkinson/metabolismo
2.
Pharmacol Biochem Behav ; 217: 173393, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35513119

RESUMEN

Parkinson's disease (PD) is a progressive, neurodegenerative movement disorder caused by loss of nigrostriatal dopamine (DA) neurons. DA replacement therapy using L-3,4-dihydroxyphenylalanine (l-DOPA) improves motor function but often results in l-DOPA-induced dyskinesia (LID) typified by abnormal involuntary movements (AIMs). In states of DA depletion, striatal serotonin (5-HT) hyperinnervation and glutamate overactivity are implicated in LID. To target these co-mechanisms, this study investigated the potential anti-dyskinetic effects of FDA-approved Vilazodone (VZD), a 5-HT transport blocker and partial 5-HT1A agonist, and Amantadine (AMAT), a purported NMDA glutamate antagonist, in 6-hydroxydopamine-lesioned hemiparkinsonian Sprague-Dawley rats. Dose-response curves for each drug against l-DOPA-induced AIMs were determined to identify effective threshold doses. A second cohort of rats was tested using the threshold doses of VZD (1, 2.5 mg/kg, s.c.) and/or AMAT (40 mg/kg, s.c.) to examine their combined, acute effects on LID. In a third cohort, VZD and/or AMAT were administered daily with l-DOPA for 14 days to determine prophylactic effects on LID development. In a final cohort, rats with established LID received VZD and/or AMAT injections for 2 weeks to examine their interventional properties. Throughout experiments, AIMs were rated for dyskinesia severity and forepaw adjusting steps (FAS) were monitored l-DOPA motor efficacy. Results revealed that acute and chronic VZD + l-DOPA treatment significantly decreased AIMs and maintained FAS compared to l-DOPA alone. AMAT + l-DOPA co-administration did not exert any significant effects on AIMs or FAS, while the co-administration of VZD and AMAT with l-DOPA demonstrated intermediate effects. These results suggest that co-administration of low-dose VZD and AMAT with l-DOPA does not synergistically reduce LID in hemiparkinsonian rats. Importantly, low doses of VZD (2.5, 5 mg/kg) did reduce the development and expression of LID while maintaining l-DOPA efficacy, supporting its potential therapeutic utility for PD patients.


Asunto(s)
Discinesia Inducida por Medicamentos , Enfermedad de Parkinson , Amantadina/farmacología , Amantadina/uso terapéutico , Animales , Antiparkinsonianos/efectos adversos , Modelos Animales de Enfermedad , Discinesia Inducida por Medicamentos/tratamiento farmacológico , Discinesia Inducida por Medicamentos/etiología , Antagonistas de Aminoácidos Excitadores/uso terapéutico , Humanos , Levodopa/efectos adversos , Oxidopamina , Enfermedad de Parkinson/tratamiento farmacológico , Ratas , Ratas Sprague-Dawley , Serotonina/metabolismo , Clorhidrato de Vilazodona/uso terapéutico
3.
mSphere ; 5(6)2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-33239369

RESUMEN

Bacterial biofilms are major contributors to chronic infections in humans. Because they are recalcitrant to conventional therapy, they present a particularly difficult treatment challenge. Identifying factors involved in biofilm development can help uncover novel targets and guide the development of antibiofilm strategies. Pseudomonas aeruginosa causes surgical site, burn wound, and hospital-acquired infections and is also associated with aggressive biofilm formation in the lungs of cystic fibrosis patients. A potent but poorly understood contributor to P. aeruginosa virulence is the ability to produce outer membrane vesicles (OMVs). OMV trafficking has been associated with cell-cell communication, virulence factor delivery, and transfer of antibiotic resistance genes. Because OMVs have almost exclusively been studied using planktonic cultures, little is known about their biogenesis and function in biofilms. Several groups have shown that Pseudomonas quinolone signal (PQS) induces OMV formation in P. aeruginosa Our group described a biophysical mechanism for this and recently showed it is operative in biofilms. Here, we demonstrate that PQS-induced OMV production is highly dynamic during biofilm development. Interestingly, PQS and OMV synthesis are significantly elevated during dispersion compared to attachment and maturation stages. PQS biosynthetic and receptor mutant biofilms were significantly impaired in their ability to disperse, but this phenotype was rescued by genetic complementation or exogenous addition of PQS. Finally, we show that purified OMVs can actively degrade extracellular protein, lipid, and DNA. We therefore propose that enhanced production of PQS-induced OMVs during biofilm dispersion facilitates cell escape by coordinating the controlled degradation of biofilm matrix components.IMPORTANCE Treatments that manipulate biofilm dispersion hold the potential to convert chronic drug-tolerant biofilm infections from protected sessile communities into released populations that are orders-of-magnitude more susceptible to antimicrobial treatment. However, dispersed cells often exhibit increased acute virulence and dissemination phenotypes. A thorough understanding of the dispersion process is therefore critical before this promising strategy can be effectively employed. Pseudomonas quinolone signal (PQS) has been implicated in early biofilm development, but we hypothesized that its function as an outer membrane vesicle (OMV) inducer may contribute at multiple stages. Here, we demonstrate that PQS and OMVs are differentially produced during Pseudomonas aeruginosa biofilm development and provide evidence that effective biofilm dispersion is dependent on the production of PQS-induced OMVs, which likely act as delivery vehicles for matrix-degrading enzymes. These findings lay the groundwork for understanding OMV contributions to biofilm development and suggest a model to explain the controlled matrix degradation that accompanies biofilm dispersion in many species.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Biopelículas , Pseudomonas aeruginosa/metabolismo , Quinolonas/metabolismo , Proteínas Bacterianas/metabolismo , Membrana Celular/metabolismo , Biogénesis de Organelos , Pseudomonas aeruginosa/patogenicidad , Percepción de Quorum , Factores de Virulencia/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA