RESUMEN
INTRODUCTION: The field of forensic DNA analysis has undergone rapid advancements in recent decades. The integration of massively parallel sequencing (MPS) has notably expanded the forensic toolkit, moving beyond identity matching to predicting phenotypic traits and biogeographical ancestry. This shift is of particular significance in cases where conventional DNA profiling fails to identify a single suspect. Supplementing forensic analyses with estimated biological age may be valuable but involves a complex and time-consuming DNA methylation analysis. This study explores and validates the performance of a comprehensive forensic third-generation sequencing assay utilizing Oxford Nanopore Technologies (ONT) in an adaptive and direct sequencing approach. We incorporated the most widely used forensic markers, i.e., STRs, SNPs, InDels, mitochondrial DNA (mtDNA), and two methylation-based clock classifiers, thereby combining forensic genetic and epigenetic analysis in one single workflow. METHODS AND RESULTS: In our investigation, DNA from six anonymous individuals was sequenced using the ONT standard adaptive direct sequencing approach, reaching a mean percentage of on-target reads ranging from 6.6â¯% to 7.7â¯% per sample. ONT data was compared to standard MPS data and Illumina EPIC DNA methylation profiles. Basecalling employed recommended ONT software packages. TREAT was used for ONT-based analysis of autosomal and Y-chromosome STRs, achieving 90-92â¯% correct calls depending on allelic read depth thresholds. InDel analyses for two lower-quality samples proved challenging due to inadequate read depth, while the remaining four samples significantly contributed to the observed percentage markers (60.9â¯%) and correct calls (97.8â¯%). SNP analysis achieved a 98â¯% call rate, with only two mismatches and two missed alleles. ONT-generated DNA methylation data demonstrated Pearson's correlation coefficients with EPIC data ranging from 0.67 to 0.97 for Horvath's clock. Additional age-associated markers exhibited Pearson's correlation coefficients with chronological age between 0.14 (ELOVL2) and 0.96 (FHL2) at read depths of <30 and <20, respectively. Despite excluding mtDNA from our targeted sequencing approach, adaptive proof-reading fragments covered the complete mtDNA with an average read depth of 21-72, showing 100â¯% concordance with reference data. DISCUSSION: Our exploratory study using ONT adaptive sequencing for conventional forensic and age associated DNA methylation markers showed high sequencing accuracy for a significant number of markers, showcasing ONT as a promising (epi)genetic forensic method. Future studies must address three critical aspects: determining clear quantity and quality measures and detection thresholds for accuracy, optimizing input DNA quantity for forensic casework expectations, and addressing ethical considerations associated with phenotype and ancestry analysis to prevent ethnic biases.
RESUMEN
Tandem repeats (TR) play important roles in genomic variation and disease risk in humans. Long-read sequencing allows for the accurate characterization of TRs, however, the underlying bioinformatics perspectives remain challenging. We present otter and TREAT: otter is a fast targeted local assembler, cross-compatible across different sequencing platforms. It is integrated in TREAT, an end-to-end workflow for TR characterization, visualization and analysis across multiple genomes. In a comparison with existing tools based on long-read sequencing data from both Oxford Nanopore Technology (ONT, Simplex and Duplex) and PacBio (Sequel 2 and Revio), otter and TREAT achieved state-of-the-art genotyping and motif characterisation accuracy. Applied to clinically relevant TRs, TREAT/otter significantly identified individuals with pathogenic TR expansions. When applied to a case-control setting, we significantly replicated previously reported associations of TRs with Alzheimer's Disease, including those near or within APOC1 (p=2.63x10-9), SPI1 (p=6.5x10-3) and ABCA7 (p=0.04) genes. We used TREAT/otter to systematically evaluate potential biases when genotyping TRs using diverse ONT and PacBio long-read sequencing datasets. We showed that, in rare cases (0.06%), long-read sequencing suffers from coverage drops in TRs, including the disease-associated TRs in ABCA7 and RFC1 genes. Such coverage drops can lead to TR misgenotyping, hampering the accurate characterization of TR alleles. Taken together, our tools can accurately genotype TR across different sequencing technologies and with minimal requirements, allowing end-to-end analysis and comparisons of TR in human genomes, with broad applications in research and clinical fields.
RESUMEN
BACKGROUND AND OBJECTIVES: More than 200 genetic variants have been associated with multiple sclerosis (MS) susceptibility. However, it is unclear to what extent genetic factors influence lifetime risk of MS. Using a population-based birth-year cohort, we investigate the effect of genetics on lifetime risk of MS. METHODS: In the Project Y study, we tracked down almost all persons with MS (pwMS) from birth year 1966 in the Netherlands. As control participants, we included non-MS participants from the Project Y cohort (born 1965-1967 in the Netherlands) and non-MS participants from the Amsterdam Dementia Cohort born between 1963 and 1969. Genetic variants associated with MS were determined in pwMS and control participants using genotyping or imputation methods. Polygenic risk scores (PRSs) based on variants and weights from the largest genetic study in MS were calculated for each participant and assigned into deciles based on the PRS distribution in the control participants. We examined the lifetime risk for each decile and the association between PRS and MS disease variables, including age at onset and time to secondary progression. RESULTS: MS-PRS was calculated for 285 pwMS (mean age 53.0 ± 0.9 years, 72.3% female) and 267 control participants (mean age 51.8 ± 3.2 years, 58.1% female). Based on the lifetime risk estimation, we observed that 1:2,739 of the women with the lowest 30% genetic risk developed MS, whereas 1:92 of the women with the top 10% highest risk developed MS. For men, only 1:7,900 developed MS in the lowest 30% genetic risk group, compared with 1:293 men with the top 10% genetic risk. The PRS was not significantly associated with age at onset and time to secondary progression in both sexes. DISCUSSION: Our results show that the lifetime risk of MS is strongly influenced by genetic factors. Our findings have the potential to support diagnostic certainty in individuals with suspected MS: a high PRS could strengthen a diagnosis, but especially a PRS from the lowest tail of the PRS distribution should be considered a red flag and could prevent misdiagnosing conditions that mimic MS.
Asunto(s)
Predisposición Genética a la Enfermedad , Herencia Multifactorial , Esclerosis Múltiple , Humanos , Esclerosis Múltiple/genética , Esclerosis Múltiple/epidemiología , Masculino , Femenino , Persona de Mediana Edad , Herencia Multifactorial/genética , Predisposición Genética a la Enfermedad/genética , Países Bajos/epidemiología , Cohorte de Nacimiento , Edad de Inicio , Estudios de Cohortes , Factores de Riesgo , Progresión de la Enfermedad , Puntuación de Riesgo GenéticoRESUMEN
To investigate the functional significance of genetic risk loci identified through genome-wide association studies (GWASs), genetic loci are linked to genes based on their capacity to account for variation in gene expression, resulting in expression quantitative trait loci (eQTL). Following this, gene set analyses are commonly used to gain insights into functionality. However, the efficacy of this approach is hampered by small effect sizes and the burden of multiple testing. We propose an alternative approach: instead of examining the cumulative associations of individual genes within a gene set, we consider the collective variation of the entire gene set. We introduce the concept of gene set QTL (gsQTL), and show it to be more adept at identifying links between genetic risk variants and specific gene sets. Notably, gsQTL experiences less susceptibility to inflation or deflation of significant enrichments compared with conventional methods. Furthermore, we demonstrate the broader applicability of shared variability within gene sets. This is evident in scenarios such as the coordinated regulation of genes by a transcription factor or coordinated differential expression.
RESUMEN
INTRODUCTION: Unraveling how Alzheimer's disease (AD) genetic risk is related to neuropathological heterogeneity, and whether this occurs through specific biological pathways, is a key step toward precision medicine. METHODS: We computed pathway-specific genetic risk scores (GRSs) in non-demented individuals and investigated how AD risk variants predict cerebrospinal fluid (CSF) and imaging biomarkers reflecting AD pathology, cardiovascular, white matter integrity, and brain connectivity. RESULTS: CSF amyloidbeta and phosphorylated tau were related to most GRSs. Inflammatory pathways were associated with cerebrovascular disease, whereas quantitative measures of white matter lesion and microstructure integrity were predicted by clearance and migration pathways. Functional connectivity alterations were related to genetic variants involved in signal transduction and synaptic communication. DISCUSSION: This study reveals distinct genetic risk profiles in association with specific pathophysiological aspects in predementia stages of AD, unraveling the biological substrates of the heterogeneity of AD-associated endophenotypes and promoting a step forward in disease understanding and development of personalized therapies. HIGHLIGHTS: Polygenic risk for Alzheimer's disease encompasses six biological pathways that can be quantified with pathway-specific genetic risk scores, and differentially relate to cerebrospinal fluid and imaging biomarkers. Inflammatory pathways are mostly related to cerebrovascular burden. White matter health is associated with pathways of clearance and membrane integrity, whereas functional connectivity measures are related to signal transduction and synaptic communication pathways.
Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Biomarcadores , Endofenotipos , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/líquido cefalorraquídeo , Enfermedad de Alzheimer/patología , Biomarcadores/líquido cefalorraquídeo , Péptidos beta-Amiloides/líquido cefalorraquídeo , Femenino , Masculino , Proteínas tau/líquido cefalorraquídeo , Anciano , Encéfalo/patología , Encéfalo/diagnóstico por imagen , Predisposición Genética a la Enfermedad , Persona de Mediana Edad , Imagen por Resonancia Magnética , Sustancia Blanca/patología , Sustancia Blanca/diagnóstico por imagenRESUMEN
BACKGROUND: Alzheimer's disease (AD) prevalence increases with age, yet a small fraction of the population reaches ages > 100 years without cognitive decline. We studied the genetic factors associated with such resilience against AD. METHODS: Genome-wide association studies identified 86 single nucleotide polymorphisms (SNPs) associated with AD risk. We estimated SNP frequency in 2281 AD cases, 3165 age-matched controls, and 346 cognitively healthy centenarians. We calculated a polygenic risk score (PRS) for each individual and investigated the functional properties of SNPs enriched/depleted in centenarians. RESULTS: Cognitively healthy centenarians were enriched with the protective alleles of the SNPs associated with AD risk. The protective effect concentrated on the alleles in/near ANKH, GRN, TMEM106B, SORT1, PLCG2, RIN3, and APOE genes. This translated to >5-fold lower PRS in centenarians compared to AD cases (P = 7.69 × 10-71), and 2-fold lower compared to age-matched controls (P = 5.83 × 10-17). DISCUSSION: Maintaining cognitive health until extreme ages requires complex genetic protection against AD, which concentrates on the genes associated with the endolysosomal and immune systems. HIGHLIGHTS: Cognitively healthy cent enarians are enriched with the protective alleles of genetic variants associated with Alzheimer's disease (AD). The protective effect is concentrated on variants involved in the immune and endolysosomal systems. Combining variants into a polygenic risk score (PRS) translated to > 5-fold lower PRS in centenarians compared to AD cases, and ≈ 2-fold lower compared to middle-aged healthy controls.
Asunto(s)
Enfermedad de Alzheimer , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/prevención & control , Femenino , Masculino , Anciano de 80 o más Años , Predisposición Genética a la Enfermedad , Herencia Multifactorial/genética , Alelos , Estudios de Casos y ControlesRESUMEN
Genome-wide association studies have successfully identified many genetic risk loci for dementia, but exact biological mechanisms through which genetic risk factors contribute to dementia remains unclear. Integrating CSF proteomic data with dementia risk loci could reveal intermediate molecular pathways connecting genetic variance to the development of dementia. We tested to what extent effects of known dementia risk loci can be observed in CSF levels of 665 proteins [proximity extension-based (PEA) immunoassays] in a deeply-phenotyped mixed memory clinic cohort [n = 502, mean age (standard deviation, SD) = 64.1 (8.7) years, 181 female (35.4%)], including patients with Alzheimer's disease (AD, n = 213), dementia with Lewy bodies (DLB, n = 50) and frontotemporal dementia (FTD, n = 93), and controls (n = 146). Validation was assessed in independent cohorts (n = 99 PEA platform, n = 198, mass reaction monitoring-targeted mass spectroscopy and multiplex assay). We performed additional analyses stratified according to diagnostic status (AD, DLB, FTD and controls separately), to explore whether associations between CSF proteins and genetic variants were specific to disease or not. We identified four AD risk loci as protein quantitative trait loci (pQTL): CR1-CR2 (rs3818361, P = 1.65 × 10-8), ZCWPW1-PILRB (rs1476679, P = 2.73 × 10-32), CTSH-CTSH (rs3784539, P = 2.88 × 10-24) and HESX1-RETN (rs186108507, P = 8.39 × 10-8), of which the first three pQTLs showed direct replication in the independent cohorts. We identified one AD-specific association between a rare genetic variant of TREM2 and CSF IL6 levels (rs75932628, P = 3.90 × 10-7). DLB risk locus GBA showed positive trans effects on seven inter-related CSF levels in DLB patients only. No pQTLs were identified for FTD loci, either for the total sample as for analyses performed within FTD only. Protein QTL variants were involved in the immune system, highlighting the importance of this system in the pathophysiology of dementia. We further identified pQTLs in stratified analyses for AD and DLB, hinting at disease-specific pQTLs in dementia. Dissecting the contribution of risk loci to neurobiological processes aids in understanding disease mechanisms underlying dementia.
Asunto(s)
Enfermedad de Alzheimer , Demencia , Demencia Frontotemporal , Estudio de Asociación del Genoma Completo , Proteoma , Humanos , Femenino , Masculino , Anciano , Persona de Mediana Edad , Demencia Frontotemporal/genética , Demencia Frontotemporal/líquido cefalorraquídeo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/líquido cefalorraquídeo , Proteoma/genética , Demencia/líquido cefalorraquídeo , Demencia/genética , Enfermedad por Cuerpos de Lewy/genética , Enfermedad por Cuerpos de Lewy/líquido cefalorraquídeo , Predisposición Genética a la Enfermedad , Estudios de Cohortes , Factores de Riesgo , Biomarcadores/líquido cefalorraquídeoRESUMEN
Alzheimer's disease (AD) is heterogenous at the molecular level. Understanding this heterogeneity is critical for AD drug development. Here we define AD molecular subtypes using mass spectrometry proteomics in cerebrospinal fluid, based on 1,058 proteins, with different levels in individuals with AD (n = 419) compared to controls (n = 187). These AD subtypes had alterations in protein levels that were associated with distinct molecular processes: subtype 1 was characterized by proteins related to neuronal hyperplasticity; subtype 2 by innate immune activation; subtype 3 by RNA dysregulation; subtype 4 by choroid plexus dysfunction; and subtype 5 by blood-brain barrier impairment. Each subtype was related to specific AD genetic risk variants, for example, subtype 1 was enriched with TREM2 R47H. Subtypes also differed in clinical outcomes, survival times and anatomical patterns of brain atrophy. These results indicate molecular heterogeneity in AD and highlight the need for personalized medicine.
Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/genética , ProteómicaRESUMEN
INTRODUCTION: Both late-onset Alzheimer's disease (AD) and ageing have a strong genetic component. In each case, many associated variants have been discovered, but how much missing heritability remains to be discovered is debated. Variability in the estimation of SNP-based heritability could explain the differences in reported heritability. METHODS: We compute heritability in five large independent cohorts (N = 7,396, 1,566, 803, 12,528 and 3,963) to determine whether a consensus for the AD heritability estimate can be reached. These cohorts vary by sample size, age of cases and controls and phenotype definition. We compute heritability a) for all SNPs, b) excluding APOE region, c) excluding both APOE and genome-wide association study hit regions, and d) SNPs overlapping a microglia gene-set. RESULTS: SNP-based heritability of late onset Alzheimer's disease is between 38 and 66% when age and genetic disease architecture are correctly accounted for. The heritability estimates decrease by 12% [SD = 8%] on average when the APOE region is excluded and an additional 1% [SD = 3%] when genome-wide significant regions were removed. A microglia gene-set explains 69-84% of our estimates of SNP-based heritability using only 3% of total SNPs in all cohorts. CONCLUSION: The heritability of neurodegenerative disorders cannot be represented as a single number, because it is dependent on the ages of cases and controls. Genome-wide association studies pick up a large proportion of total AD heritability when age and genetic architecture are correctly accounted for. Around 13% of SNP-based heritability can be explained by known genetic loci and the remaining heritability likely resides around microglial related genes.
Asunto(s)
Enfermedad de Alzheimer , Estudio de Asociación del Genoma Completo , Humanos , Predisposición Genética a la Enfermedad , Enfermedad de Alzheimer/genética , Sitios Genéticos , Polimorfismo de Nucleótido Simple , Apolipoproteínas E/genéticaAsunto(s)
Enfermedad de Alzheimer , Multiómica , Humanos , Biología Computacional , Genómica , BiomarcadoresRESUMEN
Amyloid-beta 42 (Aß42) and phosphorylated tau (pTau) levels in cerebrospinal fluid (CSF) reflect core features of the pathogenesis of Alzheimer's disease (AD) more directly than clinical diagnosis. Initiated by the European Alzheimer & Dementia Biobank (EADB), the largest collaborative effort on genetics underlying CSF biomarkers was established, including 31 cohorts with a total of 13,116 individuals (discovery n = 8074; replication n = 5042 individuals). Besides the APOE locus, novel associations with two other well-established AD risk loci were observed; CR1 was shown a locus for Aß42 and BIN1 for pTau. GMNC and C16orf95 were further identified as loci for pTau, of which the latter is novel. Clustering methods exploring the influence of all known AD risk loci on the CSF protein levels, revealed 4 biological categories suggesting multiple Aß42 and pTau related biological pathways involved in the etiology of AD. In functional follow-up analyses, GMNC and C16orf95 both associated with lateral ventricular volume, implying an overlap in genetic etiology for tau levels and brain ventricular volume.
Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/líquido cefalorraquídeo , Apolipoproteínas E/genética , Biomarcadores/líquido cefalorraquídeo , Proteínas de Ciclo Celular , Humanos , Fragmentos de Péptidos/líquido cefalorraquídeo , Proteínas tau/líquido cefalorraquídeo , Proteínas tau/genéticaRESUMEN
INTRODUCTION: We investigated relationships among genetic determinants of Alzheimer's disease (AD), amyloid/tau/neurodegenaration (ATN) biomarkers, and risk of dementia. METHODS: We studied cognitively normal individuals with subjective cognitive decline (SCD) from the Amsterdam Dementia Cohort and SCIENCe project. We examined associations between genetic variants and ATN biomarkers, and evaluated their predictive value for incident dementia. A polygenic risk score (PRS) was calculated based on 39 genetic variants. The APOE gene was not included in the PRS and was analyzed separately. RESULTS: The PRS and APOE ε4 were associated with amyloid-positive ATN profiles, and APOE ε4 additionally with isolated increased tau (A-T+N-). A high PRS and APOE ε4 separately predicted AD dementia. Combined, a high PRS increased while a low PRS attenuated the risk associated with ε4 carriers. DISCUSSION: Genetic variants beyond APOE are clinically relevant and contribute to the pathophysiology of AD. In the future, a PRS might be used in individualized risk profiling.
RESUMEN
Genetic factors play a major role in frontotemporal dementia (FTD). The majority of FTD cannot be genetically explained yet and it is likely that there are still FTD risk loci to be discovered. Common variants have been identified with genome-wide association studies (GWAS), but these studies have not systematically searched for rare variants. To identify rare and new common variant FTD risk loci and provide more insight into the heritability of C9ORF72-related FTD, we performed a GWAS consisting of 354 FTD patients (including and excluding N = 28 pathological repeat carriers) and 4209 control subjects. The Haplotype Reference Consortium was used as reference panel, allowing for the imputation of rare genetic variants. Two rare genetic variants nearby C9ORF72 were strongly associated with FTD in the discovery (rs147211831: OR = 4.8, P = 9.2 × 10-9, rs117204439: OR = 4.9, P = 6.0 × 10-9) and replication analysis (P < 1.1 × 10-3). These variants also significantly associated with amyotrophic lateral sclerosis in a publicly available dataset. Using haplotype analyses in 1200 individuals, we showed that these variants tag a sub-haplotype of the founder haplotype of the repeat expansion that was previously found to be present in virtually all pathological C9ORF72 G4C2 repeat lengths. This new risk haplotype was 10 times more likely to contain a C9ORF72 pathological repeat length compared to founder haplotypes without one of the two risk variants (~22% versus ~2%; P = 7.70 × 10-58). In haplotypes without a pathologic expansion, the founder risk haplotype had a higher number of repeats (median = 12 repeats) compared to the founder haplotype without the risk variants (median = 8 repeats) (P = 2.05 × 10-260). In conclusion, the identified risk haplotype, which is carried by ~4% of all individuals, is a major risk factor for pathological repeat lengths of C9ORF72 G4C2. These findings strongly indicate that longer C9ORF72 repeats are unstable and more likely to convert to germline pathological C9ORF72 repeat expansions.
Asunto(s)
Proteína C9orf72/genética , Demencia Frontotemporal , Estudio de Asociación del Genoma Completo , Expansión de las Repeticiones de ADN/genética , Demencia Frontotemporal/genética , Haplotipos , HumanosRESUMEN
BACKGROUND: Dementia with Lewy bodies (DLB) is a complex, progressive neurodegenerative disease with considerable phenotypic, pathological, and genetic heterogeneity. OBJECTIVE: We tested if genetic variants in part explain the heterogeneity in DLB. METHODS: We tested the effects of variants previously associated with DLB (near APOE, GBA, and SNCA) and polygenic risk scores for Alzheimer's disease (AD-PRS) and Parkinson's disease (PD-PRS). We studied 190 probable DLB patients from the Alzheimer's dementia cohort and compared them to 2,552 control subjects. The p-tau/Aß1-42 ratio in cerebrospinal fluid was used as in vivo proxy to separate DLB cases into DLB with concomitant AD pathology (DLB-AD) or DLB without AD (DLB-pure). We studied the clinical measures age, Mini-Mental State Examination (MMSE), and the presence of core symptoms at diagnosis and disease duration. RESULTS: We found that all studied genetic factors significantly associated with DLB risk (all-DLB). Second, we stratified the DLB patients by the presence of concomitant AD pathology and found that APOE É4 and the AD-PRS associated specifically with DLB-AD, but less with DLB-pure. In addition, the GBA p.E365K variant showed strong associated with DLB-pure and less with DLB-AD. Last, we studied the clinical measures and found that APOE É4 associated with reduced MMSE, higher odds to have fluctuations and a shorter disease duration. In addition, the GBA p.E365K variant reduced the age at onset by 5.7 years, but the other variants and the PRS did not associate with clinical features. CONCLUSION: These finding increase our understanding of the pathological and clinical heterogeneity in DLB.
Asunto(s)
Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/líquido cefalorraquídeo , Enfermedad por Cuerpos de Lewy , Mutación/genética , Proteínas tau/líquido cefalorraquídeo , Anciano , Enfermedad de Alzheimer/genética , Apolipoproteína E4/genética , Estudios de Cohortes , Femenino , Glucosilceramidasa/genética , Humanos , Enfermedad por Cuerpos de Lewy/diagnóstico , Enfermedad por Cuerpos de Lewy/genética , Enfermedad por Cuerpos de Lewy/patología , Masculino , Pruebas de Estado Mental y Demencia/estadística & datos numéricos , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patologíaRESUMEN
Genetic discoveries of Alzheimer's disease are the drivers of our understanding, and together with polygenetic risk stratification can contribute towards planning of feasible and efficient preventive and curative clinical trials. We first perform a large genetic association study by merging all available case-control datasets and by-proxy study results (discovery n = 409,435 and validation size n = 58,190). Here, we add six variants associated with Alzheimer's disease risk (near APP, CHRNE, PRKD3/NDUFAF7, PLCG2 and two exonic variants in the SHARPIN gene). Assessment of the polygenic risk score and stratifying by APOE reveal a 4 to 5.5 years difference in median age at onset of Alzheimer's disease patients in APOE É4 carriers. Because of this study, the underlying mechanisms of APP can be studied to refine the amyloid cascade and the polygenic risk score provides a tool to select individuals at high risk of Alzheimer's disease.
Asunto(s)
Enfermedad de Alzheimer/genética , Herencia Multifactorial , Edad de Inicio , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/epidemiología , Enfermedad de Alzheimer/patología , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Apolipoproteínas E/genética , Estudios de Casos y Controles , Estudios de Cohortes , Conjuntos de Datos como Asunto , Femenino , Estudios de Seguimiento , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Heterocigoto , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Medición de Riesgo/métodos , Factores de RiesgoRESUMEN
Genetic association studies are frequently used to study the genetic basis of numerous human phenotypes. However, the rapid interrogation of how well a certain genomic region associates across traits as well as the interpretation of genetic associations is often complex and requires the integration of multiple sources of annotation, which involves advanced bioinformatic skills. We developed snpXplorer, an easy-to-use web-server application for exploring Single Nucleotide Polymorphisms (SNP) association statistics and to functionally annotate sets of SNPs. snpXplorer can superimpose association statistics from multiple studies, and displays regional information including SNP associations, structural variations, recombination rates, eQTL, linkage disequilibrium patterns, genes and gene-expressions per tissue. By overlaying multiple GWAS studies, snpXplorer can be used to compare levels of association across different traits, which may help the interpretation of variant consequences. Given a list of SNPs, snpXplorer can also be used to perform variant-to-gene mapping and gene-set enrichment analysis to identify molecular pathways that are overrepresented in the list of input SNPs. snpXplorer is freely available at https://snpxplorer.net. Source code, documentation, example files and tutorial videos are available within the Help section of snpXplorer and at https://github.com/TesiNicco/snpXplorer.
Asunto(s)
Anotación de Secuencia Molecular , Polimorfismo de Nucleótido Simple , Programas Informáticos , Enfermedad de Alzheimer/genética , Expresión Génica , Estudios de Asociación Genética , Genómica , Humanos , Desequilibrio de Ligamiento , Sitios de Carácter CuantitativoRESUMEN
Human longevity is influenced by the genetic risk of age-related diseases. As Alzheimer's disease (AD) represents a common condition at old age, an interplay between genetic factors affecting AD and longevity is expected. We explored this interplay by studying the prevalence of AD-associated single-nucleotide-polymorphisms (SNPs) in cognitively healthy centenarians, and replicated findings in a parental-longevity GWAS. We found that 28/38 SNPs that increased AD-risk also associated with lower odds of longevity. For each SNP, we express the imbalance between AD- and longevity-risk as an effect-size distribution. Based on these distributions, we grouped the SNPs in three groups: 17 SNPs increased AD-risk more than they decreased longevity-risk, and were enriched for ß-amyloid metabolism and immune signaling; 11 variants reported a larger longevity-effect compared to their AD-effect, were enriched for endocytosis/immune-signaling, and were previously associated with other age-related diseases. Unexpectedly, 10 variants associated with an increased risk of AD and higher odds of longevity. Altogether, we show that different AD-associated SNPs have different effects on longevity, including SNPs that may confer general neuro-protective functions against AD and other age-related diseases.
RESUMEN
Studying the genome of centenarians may give insights into the molecular mechanisms underlying extreme human longevity and the escape of age-related diseases. Here, we set out to construct polygenic risk scores (PRSs) for longevity and to investigate the functions of longevity-associated variants. Using a cohort of centenarians with maintained cognitive health (N = 343), a population-matched cohort of older adults from 5 cohorts (N = 2905), and summary statistics data from genome-wide association studies on parental longevity, we constructed a PRS including 330 variants that significantly discriminated between centenarians and older adults. This PRS was also associated with longer survival in an independent sample of younger individuals (p = .02), leading up to a 4-year difference in survival based on common genetic factors only. We show that this PRS was, in part, able to compensate for the deleterious effect of the APOE-ε4 allele. Using an integrative framework, we annotated the 330 variants included in this PRS by the genes they associate with. We find that they are enriched with genes associated with cellular differentiation, developmental processes, and cellular response to stress. Together, our results indicate that an extended human life span is, in part, the result of a constellation of variants each exerting small advantageous effects on aging-related biological mechanisms that maintain overall health and decrease the risk of age-related diseases.