Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Trends Mol Med ; 30(5): 459-470, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38582621

RESUMEN

Pelizaeus-Merzbacher disease (PMD) is caused by mutations in the proteolipid protein 1 (PLP1) gene encoding proteolipid protein (PLP). As a major component of myelin, mutated PLP causes progressive neurodegeneration and eventually death due to severe white matter deficits. Medical care has long been limited to symptomatic treatments, but first-in-class PMD therapies with novel mechanisms now stand poised to enter clinical trials. Here, we review PMD disease mechanisms and outline rationale for therapeutic interventions, including PLP1 suppression, cell transplantation, iron chelation, and intracellular stress modulation. We discuss available preclinical data and their implications on clinical development. With several novel treatments on the horizon, PMD is on the precipice of a new era in the diagnosis and treatment of patients suffering from this debilitating disease.


Asunto(s)
Proteína Proteolipídica de la Mielina , Vaina de Mielina , Enfermedad de Pelizaeus-Merzbacher , Enfermedad de Pelizaeus-Merzbacher/genética , Enfermedad de Pelizaeus-Merzbacher/terapia , Enfermedad de Pelizaeus-Merzbacher/diagnóstico , Enfermedad de Pelizaeus-Merzbacher/patología , Humanos , Vaina de Mielina/metabolismo , Vaina de Mielina/patología , Animales , Proteína Proteolipídica de la Mielina/genética , Proteína Proteolipídica de la Mielina/metabolismo , Mutación
2.
J Med Chem ; 67(6): 4819-4832, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38470227

RESUMEN

The inhibition of emopamil binding protein (EBP), a sterol isomerase within the cholesterol biosynthesis pathway, promotes oligodendrocyte formation, which has been proposed as a potential therapeutic approach for treating multiple sclerosis. Herein, we describe the discovery and optimization of brain-penetrant, orally bioavailable inhibitors of EBP. A structure-based drug design approach from literature compound 1 led to the discovery of a hydantoin-based scaffold, which provided balanced physicochemical properties and potency and an improved in vitro safety profile. The long half-lives of early hydantoin-based EBP inhibitors in rodents prompted an unconventional optimization strategy, focused on increasing metabolic turnover while maintaining potency and a brain-penetrant profile. The resulting EBP inhibitor 11 demonstrated strong in vivo target engagement in the brain, as illustrated by the accumulation of EBP substrate zymostenol after repeated dosing. Furthermore, compound 11 enhanced the formation of oligodendrocytes in human cortical organoids, providing additional support for our therapeutic hypothesis.


Asunto(s)
Encéfalo , Hidantoínas , Humanos , Oligodendroglía/metabolismo , Diseño de Fármacos , Hidantoínas/metabolismo
3.
Nat Neurosci ; 27(5): 836-845, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38528201

RESUMEN

Exposure to environmental chemicals can impair neurodevelopment, and oligodendrocytes may be particularly vulnerable, as their development extends from gestation into adulthood. However, few environmental chemicals have been assessed for potential risks to oligodendrocytes. Here, using a high-throughput developmental screen in cultured cells, we identified environmental chemicals in two classes that disrupt oligodendrocyte development through distinct mechanisms. Quaternary compounds, ubiquitous in disinfecting agents and personal care products, were potently and selectively cytotoxic to developing oligodendrocytes, whereas organophosphate flame retardants, commonly found in household items such as furniture and electronics, prematurely arrested oligodendrocyte maturation. Chemicals from each class impaired oligodendrocyte development postnatally in mice and in a human 3D organoid model of prenatal cortical development. Analysis of epidemiological data showed that adverse neurodevelopmental outcomes were associated with childhood exposure to the top organophosphate flame retardant identified by our screen. This work identifies toxicological vulnerabilities for oligodendrocyte development and highlights the need for deeper scrutiny of these compounds' impacts on human health.


Asunto(s)
Oligodendroglía , Oligodendroglía/efectos de los fármacos , Animales , Ratones , Humanos , Retardadores de Llama/toxicidad , Femenino , Células Cultivadas , Diferenciación Celular/efectos de los fármacos , Ratones Endogámicos C57BL , Contaminantes Ambientales/toxicidad
4.
Nat Neurosci ; 27(4): 656-665, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38378993

RESUMEN

Disease, injury and aging induce pathological reactive astrocyte states that contribute to neurodegeneration. Modulating reactive astrocytes therefore represent an attractive therapeutic strategy. Here we describe the development of an astrocyte phenotypic screening platform for identifying chemical modulators of astrocyte reactivity. Leveraging this platform for chemical screening, we identify histone deacetylase 3 (HDAC3) inhibitors as effective suppressors of pathological astrocyte reactivity. We demonstrate that HDAC3 inhibition reduces molecular and functional characteristics of reactive astrocytes in vitro. Transcriptional and chromatin mapping studies show that HDAC3 inhibition disarms pathological astrocyte gene expression and function while promoting the expression of genes associated with beneficial astrocytes. Administration of RGFP966, a small molecule HDAC3 inhibitor, blocks reactive astrocyte formation and promotes neuroprotection in vivo in mice. Collectively, these results establish a platform for discovering modulators of reactive astrocyte states, inform the mechanisms that control astrocyte reactivity and demonstrate the therapeutic benefits of modulating astrocyte reactivity for neurodegenerative diseases.


Asunto(s)
Astrocitos , Enfermedades Neurodegenerativas , Ratones , Animales , Astrocitos/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Envejecimiento/metabolismo , Sistema Nervioso Central
6.
bioRxiv ; 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37577713

RESUMEN

Multiple sclerosis (MS) is considered an inflammatory and neurodegenerative disease of the central nervous system, typically resulting in significant neurological disability that worsens over time. While considerable progress has been made in defining the immune system's role in MS pathophysiology, the contribution of intrinsic CNS-cell dysfunction remains unclear. Here, we generated the largest reported collection of iPSC lines from people with MS spanning diverse clinical subtypes and differentiated them into glia-enriched cultures. Using single-cell transcriptomic profiling, we observed several distinguishing characteristics of MS cultures pointing to glia-intrinsic disease mechanisms. We found that iPSC-derived cultures from people with primary progressive MS contained fewer oligodendrocytes. Moreover, iPSC-oligodendrocyte lineage cells and astrocytes from people with MS showed increased expression of immune and inflammatory genes that match those of glial cells from MS postmortem brains. Thus, iPSC-derived MS models provide a unique platform for dissecting glial contributions to disease phenotypes independent of the peripheral immune system and identify potential glia-specific targets for therapeutic intervention.

7.
bioRxiv ; 2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37333182

RESUMEN

Enteric glia are the predominant cell type in the enteric nervous system yet their identities and roles in gastrointestinal function are not well classified. Using our optimized single nucleus RNA-sequencing method, we identified distinct molecular classes of enteric glia and defined their morphological and spatial diversity. Our findings revealed a functionally specialized biosensor subtype of enteric glia that we call "hub cells." Deletion of the mechanosensory ion channel PIEZO2 from adult enteric glial hub cells, but not other subtypes of enteric glia, led to defects in intestinal motility and gastric emptying in mice. These results provide insight into the multifaceted functions of different enteric glial cell subtypes in gut health and emphasize that therapies targeting enteric glia could advance the treatment of gastrointestinal diseases.

8.
bioRxiv ; 2023 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-36798415

RESUMEN

Exposure to environmental chemicals can impair neurodevelopment1-4. Oligodendrocytes that wrap around axons to boost neurotransmission may be particularly vulnerable to chemical toxicity as they develop throughout fetal development and into adulthood5,6. However, few environmental chemicals have been assessed for potential risks to oligodendrocyte development. Here, we utilized a high-throughput developmental screen and human cortical brain organoids, which revealed environmental chemicals in two classes that disrupt oligodendrocyte development through distinct mechanisms. Quaternary compounds, ubiquitous in disinfecting agents, hair conditioners, and fabric softeners, were potently and selectively cytotoxic to developing oligodendrocytes through activation of the integrated stress response. Organophosphate flame retardants, commonly found in household items such as furniture and electronics, were non-cytotoxic but prematurely arrested oligodendrocyte maturation. Chemicals from each class impaired human oligodendrocyte development in a 3D organoid model of prenatal cortical development. In analysis of epidemiological data from the CDC's National Health and Nutrition Examination Survey, adverse neurodevelopmental outcomes were associated with childhood exposure to the top organophosphate flame retardant identified by our oligodendrocyte toxicity platform. Collectively, our work identifies toxicological vulnerabilities specific to oligodendrocyte development and highlights common household chemicals with high exposure risk to children that warrant deeper scrutiny for their impact on human health.

9.
Nat Commun ; 13(1): 5003, 2022 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-36008413

RESUMEN

Oligodendrocytes are specialized cells that confer neuronal myelination in the central nervous system. Leukodystrophies associated with oligodendrocyte deficits and hypomyelination are known to result when a number of tRNA metabolism genes are mutated. Thus, for unknown reasons, oligodendrocytes may be hypersensitive to perturbations in tRNA biology. In this study, we survey the tRNA transcriptome in the murine oligodendrocyte cell lineage and find that specific tRNAs are hypomodified in oligodendrocytes within or near the anticodon compared to oligodendrocyte progenitor cells (OPCs). This hypomodified state may be the result of differential expression of key modification enzymes during oligodendrocyte differentiation. Moreover, we observe a concomitant relationship between tRNA hypomodification and tRNA decoding potential; observing oligodendrocyte specific alterations in codon optimality-mediated mRNA decay and ribosome transit. Our results reveal that oligodendrocytes naturally maintain a delicate, hypersensitized tRNA/mRNA axis. We suggest this axis is a potential mediator of pathology in leukodystrophies and white matter disease when further insult to tRNA metabolism is introduced.


Asunto(s)
Anticodón , Enfermedades Desmielinizantes , Animales , Anticodón/genética , Diferenciación Celular/genética , Codón/genética , Enfermedades Desmielinizantes/genética , Ratones , Oligodendroglía/metabolismo , Estabilidad del ARN/genética , ARN de Transferencia/genética , ARN de Transferencia/metabolismo
10.
RSC Chem Biol ; 3(1): 56-68, 2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-35128409

RESUMEN

While the cholesterol biosynthesis pathway has been extensively studied, recent work has forged new links between inhibition of specific sterol pathway enzymes, accumulation of their unique sterol substrates, and biological areas as diverse as cancer, immunology, and neurodegenerative disease. We recently reported that dozens of small molecules enhance formation of oligodendrocytes, a glial cell type lost in multiple sclerosis, by inhibiting CYP51, Sterol 14-reductase, or EBP and inducing cellular accumulation of their 8,9-unsaturated sterol substrates. Several adjacent pathway enzymes also have 8,9-unsaturated sterol substrates but have not yet been evaluated as potential targets for oligodendrocyte formation or in many other biological contexts, in part due to a lack of available small-molecule probes. Here, we show that genetic suppression of SC4MOL or HSD17B7 increases the formation of oligodendrocytes. Additionally, we have identified and optimized multiple potent new series of SC4MOL and HSD17B7 inhibitors and shown that these small molecules enhance oligodendrocyte formation. SC4MOL inhibitor CW4142 induced accumulation of SC4MOL's sterol substrates in mouse brain and represents an in vivo probe of SC4MOL activity. Mechanistically, the cellular accumulation of these 8,9-unsaturated sterols represents a central driver of enhanced oligodendrocyte formation, as exogenous addition of purified SC4MOL and HSD17B7 substrates but not their 8,9-saturated analogs promotes OPC differentiation. Our work validates SC4MOL and HSD17B7 as novel targets for promoting oligodendrocyte formation, underlines a broad role for 8,9-unsaturated sterols as enhancers of oligodendrocyte formation, and establishes the first high-quality small molecules targeting SC4MOL and HSD17B7 as novel tools for probing diverse areas of biology.

11.
Curr Opin Cell Biol ; 73: 35-40, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34153742

RESUMEN

Differentiation of oligodendrocyte progenitor cells (OPCs) into myelination-capable mature oligodendrocytes is essential for proper function of the central nervous system. OPCs are tissue-resident stem cells that populate all regions of the central nervous system and exist beyond development into adulthood. Disorders that lead to disruption of this critical cell state change cause devastating myelin diseases that are often associated with shortened life span. Recent findings have also provided support for a newly appreciated contribution of perturbed OPC differentiation to neurodegenerative and psychiatric diseases. These findings emphasize the need for a more complete understanding of OPC differentiation in health and disease. Here, we review recent molecular and functional findings revealing new roles of OPCs. It is our hope that this review provides readers with an enticing snapshot of current OPC research and highlights the potential of controlling OPC fate and function to treat diseases of the brain.


Asunto(s)
Células Precursoras de Oligodendrocitos , Diferenciación Celular , Vaina de Mielina , Oligodendroglía , Células Madre
12.
Cell Stem Cell ; 28(2): 257-272.e11, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33091368

RESUMEN

Mammalian cells respond to insufficient oxygen through transcriptional regulators called hypoxia-inducible factors (HIFs). Although transiently protective, prolonged HIF activity drives distinct pathological responses in different tissues. Using a model of chronic HIF1a accumulation in pluripotent-stem-cell-derived oligodendrocyte progenitors (OPCs), we demonstrate that HIF1a activates non-canonical targets to impair generation of oligodendrocytes from OPCs. HIF1a activated a unique set of genes in OPCs through interaction with the OPC-specific transcription factor OLIG2. Non-canonical targets, including Ascl2 and Dlx3, were sufficient to block differentiation through suppression of the oligodendrocyte regulator Sox10. Chemical screening revealed that inhibition of MEK/ERK signaling overcame the HIF1a-mediated block in oligodendrocyte generation by restoring Sox10 expression without affecting canonical HIF1a activity. MEK/ERK inhibition also drove oligodendrocyte formation in hypoxic regions of human oligocortical spheroids. This work defines mechanisms by which HIF1a impairs oligodendrocyte formation and establishes that cell-type-specific HIF1a targets perturb cell function in response to low oxygen.


Asunto(s)
Células Precursoras de Oligodendrocitos , Células Madre Pluripotentes , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Diferenciación Celular , Células Cultivadas , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia , Oligodendroglía
13.
Nature ; 585(7825): 397-403, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32610343

RESUMEN

Mutations in PLP1, the gene that encodes proteolipid protein (PLP), result in failure of myelination and neurological dysfunction in the X-chromosome-linked leukodystrophy Pelizaeus-Merzbacher disease (PMD)1,2. Most PLP1 mutations, including point mutations and supernumerary copy variants, lead to severe and fatal disease. Patients who lack PLP1 expression, and Plp1-null mice, can display comparatively mild phenotypes, suggesting that PLP1 suppression might provide a general therapeutic strategy for PMD1,3-5. Here we show, using CRISPR-Cas9 to suppress Plp1 expression in the jimpy (Plp1jp) point-mutation mouse model of severe PMD, increased myelination and restored nerve conduction velocity, motor function and lifespan of the mice to wild-type levels. To evaluate the translational potential of this strategy, we identified antisense oligonucleotides that stably decrease the levels of Plp1 mRNA and PLP protein throughout the neuraxis in vivo. Administration of a single dose of Plp1-targeting antisense oligonucleotides in postnatal jimpy mice fully restored oligodendrocyte numbers, increased myelination, improved motor performance, normalized respiratory function and extended lifespan up to an eight-month end point. These results suggest that PLP1 suppression could be developed as a treatment for PMD in humans. More broadly, we demonstrate that oligonucleotide-based therapeutic agents can be delivered to oligodendrocytes in vivo to modulate neurological function and lifespan, establishing a new pharmaceutical modality for myelin disorders.


Asunto(s)
Modelos Animales de Enfermedad , Proteína Proteolipídica de la Mielina/deficiencia , Enfermedad de Pelizaeus-Merzbacher/genética , Enfermedad de Pelizaeus-Merzbacher/terapia , Animales , Sistemas CRISPR-Cas , Femenino , Edición Génica , Hipoxia/metabolismo , Masculino , Ratones , Ratones Mutantes , Actividad Motora/genética , Proteína Proteolipídica de la Mielina/genética , Proteína Proteolipídica de la Mielina/metabolismo , Vaina de Mielina/metabolismo , Oligodendroglía/metabolismo , Oligonucleótidos Antisentido/administración & dosificación , Oligonucleótidos Antisentido/genética , Enfermedad de Pelizaeus-Merzbacher/metabolismo , Mutación Puntual , Pruebas de Función Respiratoria , Análisis de Supervivencia
14.
Cell ; 181(2): 382-395.e21, 2020 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-32246942

RESUMEN

Multiple sclerosis (MS) is an autoimmune disease characterized by attack on oligodendrocytes within the central nervous system (CNS). Despite widespread use of immunomodulatory therapies, patients may still face progressive disability because of failure of myelin regeneration and loss of neurons, suggesting additional cellular pathologies. Here, we describe a general approach for identifying specific cell types in which a disease allele exerts a pathogenic effect. Applying this approach to MS risk loci, we pinpoint likely pathogenic cell types for 70%. In addition to T cell loci, we unexpectedly identified myeloid- and CNS-specific risk loci, including two sites that dysregulate transcriptional pause release in oligodendrocytes. Functional studies demonstrated inhibition of transcriptional elongation is a dominant pathway blocking oligodendrocyte maturation. Furthermore, pause release factors are frequently dysregulated in MS brain tissue. These data implicate cell-intrinsic aberrations outside of the immune system and suggest new avenues for therapeutic development. VIDEO ABSTRACT.


Asunto(s)
Comunicación Celular/genética , Enfermedad/genética , Oligodendroglía/metabolismo , Animales , Encéfalo/metabolismo , Sistema Nervioso Central/metabolismo , Enfermedades Desmielinizantes/metabolismo , Enfermedades Desmielinizantes/patología , Humanos , Esclerosis Múltiple/genética , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/fisiopatología , Vaina de Mielina/metabolismo , Neuronas/metabolismo , Oligodendroglía/fisiología , Factores de Riesgo
15.
Cell Rep ; 29(4): 904-919.e9, 2019 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-31644912

RESUMEN

Remyelination requires the generation of new oligodendrocytes (OLs), which are derived from oligodendrocyte progenitor cells (OPCs). Maturation of OPCs into OLs is a multi-step process. Here, we describe a microRNA expressed by OLs, miR-27a, as a regulator of OL development and survival. Increased levels of miR-27a were found in OPCs associated with multiple sclerosis (MS) lesions and in animal models of demyelination. Increased levels of miR-27a led to inhibition of OPC proliferation by cell-cycle arrest, as well as impaired differentiation of human OPCs (hOPCs) and myelination by dysregulating the Wnt-ß-catenin signaling pathway. In vivo administration of miR-27a led to suppression of myelinogenic signals, leading to loss of endogenous myelination and remyelination. Our findings provide evidence supporting a critical role for a steady-state level of OL-specific miR-27a in supporting multiple steps in the complex process of OPC maturation and remyelination.


Asunto(s)
Encéfalo/metabolismo , MicroARNs/metabolismo , Vaina de Mielina/metabolismo , Animales , Encéfalo/citología , Proliferación Celular , Células Cultivadas , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , Neurogénesis , Vía de Señalización Wnt
16.
Front Neurosci ; 13: 829, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31440130

RESUMEN

Oligodendrocyte precursor cells (OPCs), also known as NG2 glia, arise from neural progenitor cells in the embryonic ganglionic eminences that also generate inhibitory neurons. They are ubiquitously distributed in the central nervous system, remain proliferative through life, and generate oligodendrocytes in both gray and white matter. OPCs exhibit some lineage plasticity, and attempts have been made to reprogram them into neurons, with varying degrees of success. However, little is known about how epigenetic mechanisms affect the ability of OPCs to undergo fate switch and whether OPCs have a unique chromatin environment around neuronal genes that might contribute to their lineage plasticity. Our bioinformatic analysis of histone posttranslational modifications at interneuron genes in OPCs revealed that OPCs had significantly fewer bivalent and repressive histone marks at interneuron genes compared to astrocytes or fibroblasts. Conversely, OPCs had a greater degree of deposition of active histone modifications at bivalently marked interneuron genes than other cell types, and this was correlated with higher expression levels of these genes in OPCs. Furthermore, a significantly higher proportion of interneuron genes in OPCs than in other cell types lacked the histone posttranslational modifications examined. These genes had a moderately high level of expression, suggesting that the "no mark" interneuron genes could be in a transcriptionally "poised" or "transitional" state. Thus, our findings suggest that OPCs have a unique histone code at their interneuron genes that may obviate the need for erasure of repressive marks during their fate switch to inhibitory neurons.

17.
Expert Rev Neurother ; 19(10): 997-1013, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31215271

RESUMEN

Introduction: Approved disease-modifying therapies for multiple sclerosis (MS) lessen inflammatory disease activity that causes relapses and MRI lesions. However, chronic inflammation and demyelination lead to axonal degeneration and neuronal loss, for which there currently is no effective treatment. There has been increasing interest in developing repair-promoting strategies, but there are important unanswered questions regarding the mechanisms and appropriate methods to evaluate these treatments. Areas covered: The rationale for remyelinating agents in MS is discussed, with an overview of both myelin physiology and endogenous repair mechanisms. This is followed by a discussion of the identification and development of potential remyelinating drugs. Potential biomarkers of remyelination are reviewed, including considerations regarding measuring remyelination in clinical trials. Information and data were obtained from a search of recent literature through PubMed. Peer-reviewed original articles and review articles were included. Expert opinion: There are several obstacles to the translation of potential remyelinating agents to clinical trials, particularly uncertainty regarding the most appropriate study population and method to monitor remyelination. Refinements in clinical trial design and outcome measurement, potentially via advanced imaging techniques, are needed to optimize detection of repair in patients with MS.


Asunto(s)
Esclerosis Múltiple/tratamiento farmacológico , Remielinización/efectos de los fármacos , Animales , Humanos
18.
Cell Rep ; 27(13): 3832-3843.e6, 2019 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-31242417

RESUMEN

Astrocytic differentiation is developmentally impaired in patients with childhood-onset schizophrenia (SCZ). To determine why, we used genetic gain- and loss-of-function studies to establish the contributions of differentially expressed transcriptional regulators to the defective differentiation of glial progenitor cells (GPCs) produced from SCZ patient-derived induced pluripotent cells (iPSCs). Negative regulators of the bone morphogenetic protein (BMP) pathway were upregulated in SCZ GPCs, including BAMBI, FST, and GREM1, whose overexpression retained SCZ GPCs at the progenitor stage. SMAD4 knockdown (KD) suppressed the production of these BMP inhibitors by SCZ GPCs and rescued normal astrocytic differentiation. In addition, the BMP-regulated transcriptional repressor REST was upregulated in SCZ GPCs, and its KD similarly restored normal glial differentiation. REST KD also rescued potassium-transport-associated gene expression and K+ uptake, which were otherwise deficient in SCZ glia. These data suggest that the glial differentiation defect in childhood-onset SCZ, and its attendant disruption in K+ homeostasis, may be rescued by targeting BMP/SMAD4- and REST-dependent transcription.


Asunto(s)
Diferenciación Celular , Neuroglía/metabolismo , Proteínas Represoras/metabolismo , Esquizofrenia/metabolismo , Transducción de Señal , Proteína Smad4/metabolismo , Adolescente , Adulto , Línea Celular , Niño , Femenino , Humanos , Masculino , Neuroglía/patología , Proteínas Represoras/genética , Esquizofrenia/genética , Esquizofrenia/patología , Proteína Smad4/genética
19.
Cell Chem Biol ; 26(4): 593-599.e4, 2019 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-30773481

RESUMEN

Small molecules that promote oligodendrocyte formation have been identified in "drug repurposing" screens to nominate candidate therapeutics for diseases in which myelin is lost, including multiple sclerosis. We recently reported that many such molecules enhance oligodendrocyte formation not by their canonical targets but by inhibiting a narrow range of enzymes in cholesterol biosynthesis. Here we identify enhancers of oligodendrocyte formation obtained by screening a structurally diverse library of 10,000 small molecules. Identification of the cellular targets of these validated hits revealed a majority inhibited the cholesterol biosynthesis enzymes CYP51, TM7SF2, or EBP. In addition, evaluation of analogs led to identification of CW3388, a potent EBP-inhibiting enhancer of oligodendrocyte formation poised for further optimization.


Asunto(s)
Inhibidores de 14 alfa Desmetilasa/farmacología , Oligodendroglía/efectos de los fármacos , Oxidorreductasas/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología , Esteroide Isomerasas/antagonistas & inhibidores , Inhibidores de 14 alfa Desmetilasa/química , Animales , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Ratones , Oligodendroglía/citología , Oligodendroglía/metabolismo , Oxidorreductasas/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Esteroide Isomerasas/metabolismo
20.
Glia ; 66(12): 2684-2699, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30306660

RESUMEN

NG2 is a type 1 integral membrane glycoprotein encoded by the Cspg4 gene. It is expressed on glial progenitor cells known as NG2 glial cells or oligodendrocyte precursor cells that exist widely throughout the developing and mature central nervous system and vascular mural cells but not on mature oligodendrocytes, astrocytes, microglia, neurons, or neural stem cells. Hence NG2 is widely used as a marker for NG2 glia in the rodent and human. The regulatory elements of the mouse Cspg4 gene and its flanking sequences have been used successfully to target reporter and Cre recombinase to NG2 glia in transgenic mice when used in a large 200 kb bacterial artificial chromosome cassette containing the 38 kb Cspg4 gene in the center. Despite the tightly regulated cell type- and stage-specific expression of NG2 in the brain and spinal cord, the mechanisms that regulate its transcription have remained unknown. Here, we describe a 1.45 kb intronic enhancer of the mouse Cspg4 gene that directed transcription of EGFP reporter to NG2 glia but not to pericytes in vitro and in transgenic mice. The 1.45 kb enhancer contained binding sites for SoxE and basic helix-loop-helix transcription factors, and its enhancer activity was augmented cooperatively by these factors, whose respective binding elements were found in close proximity to each other. Mutations in these binding elements abrogated the enhancer activity when tested in the postnatal mouse brain.


Asunto(s)
Antígenos/genética , Antígenos/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Elementos de Facilitación Genéticos/genética , Regulación del Desarrollo de la Expresión Génica/genética , Neuroglía/metabolismo , Proteoglicanos/genética , Proteoglicanos/metabolismo , Factores de Edad , Animales , Animales Recién Nacidos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Sitios de Unión/genética , Encéfalo/citología , Inmunoprecipitación de Cromatina , Proteína Ácida Fibrilar de la Glía/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Histonas/metabolismo , Ratones , Ratones Endogámicos ICR , Ratones Transgénicos , Mutación/genética , Factor de Transcripción 2 de los Oligodendrocitos/genética , Factor de Transcripción 2 de los Oligodendrocitos/metabolismo , Factores de Transcripción SOXE/genética , Factores de Transcripción SOXE/metabolismo , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...