Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
JCI Insight ; 8(17)2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37561591

RESUMEN

Pediatric cardiomyopathy (CM) represents a group of rare, severe disorders that affect the myocardium. To date, the etiology and mechanisms underlying pediatric CM are incompletely understood, hampering accurate diagnosis and individualized therapy development. Here, we identified biallelic variants in the highly conserved flightless-I (FLII) gene in 3 families with idiopathic, early-onset dilated CM. We demonstrated that patient-specific FLII variants, when brought into the zebrafish genome using CRISPR/Cas9 genome editing, resulted in the manifestation of key aspects of morphological and functional abnormalities of the heart, as observed in our patients. Importantly, using these genetic animal models, complemented with in-depth loss-of-function studies, we provided insights into the function of Flii during ventricular chamber morphogenesis in vivo, including myofibril organization and cardiomyocyte cell adhesion, as well as trabeculation. In addition, we identified Flii function to be important for the regulation of Notch and Hippo signaling, crucial pathways associated with cardiac morphogenesis and function. Taken together, our data provide experimental evidence for a role for FLII in the pathogenesis of pediatric CM and report biallelic variants as a genetic cause of pediatric CM.


Asunto(s)
Cardiomiopatías , Proteínas de Microfilamentos , Animales , Adhesión Celular/genética , Proteínas de Microfilamentos/genética , Miocitos Cardíacos/metabolismo , Miofibrillas/metabolismo , Pez Cebra/genética , Transactivadores , Cardiomiopatías/genética
2.
Hum Mol Genet ; 32(21): 3063-3077, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37552066

RESUMEN

Rab GTPases are important regulators of intracellular vesicular trafficking. RAB5C is a member of the Rab GTPase family that plays an important role in the endocytic pathway, membrane protein recycling and signaling. Here we report on 12 individuals with nine different heterozygous de novo variants in RAB5C. All but one patient with missense variants (n = 9) exhibited macrocephaly, combined with mild-to-moderate developmental delay. Patients with loss of function variants (n = 2) had an apparently more severe clinical phenotype with refractory epilepsy and intellectual disability but a normal head circumference. Four missense variants were investigated experimentally. In vitro biochemical studies revealed that all four variants were damaging, resulting in increased nucleotide exchange rate, attenuated responsivity to guanine exchange factors and heterogeneous effects on interactions with effector proteins. Studies in C. elegans confirmed that all four variants were damaging in vivo and showed defects in endocytic pathway function. The variant heterozygotes displayed phenotypes that were not observed in null heterozygotes, with two shown to be through a dominant negative mechanism. Expression of the human RAB5C variants in zebrafish embryos resulted in defective development, further underscoring the damaging effects of the RAB5C variants. Our combined bioinformatic, in vitro and in vivo experimental studies and clinical data support the association of RAB5C missense variants with a neurodevelopmental disorder characterized by macrocephaly and mild-to-moderate developmental delay through disruption of the endocytic pathway.


Asunto(s)
Discapacidad Intelectual , Megalencefalia , Trastornos del Neurodesarrollo , Animales , Humanos , Niño , Pez Cebra/genética , Pez Cebra/metabolismo , Caenorhabditis elegans/metabolismo , Trastornos del Neurodesarrollo/genética , Discapacidad Intelectual/genética , Fenotipo , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo , Megalencefalia/genética , Discapacidades del Desarrollo/genética , Mutación Missense/genética , Proteínas de Unión al GTP rab5/genética , Proteínas de Unión al GTP rab5/metabolismo
3.
Development ; 149(16)2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35980365

RESUMEN

In embryos of most animal species, the zygotic centrosome is assembled by the centriole derived from the sperm cell and pericentriolar proteins present in the oocyte. This zygotic centrosome acts as a microtubule organizing center (MTOC) to assemble the sperm aster and mitotic spindle. As MTOC formation has been studied mainly in adult cells, very little is known about the formation of the zygotic MTOC. Here, we show that zebrafish (Danio rerio) embryos lacking either maternal or paternal Cfap53, a centriolar satellite protein, arrest during the first cell cycle. Although Cfap53 is dispensable for sperm aster function, it aids proper formation of the mitotic spindle. During cell division, Cfap53 colocalizes with γ-tubulin and with other centrosomal and centriolar satellite proteins at the MTOC. Furthermore, we find that γ-tubulin localization at the MTOC is impaired in the absence of Cfap53. Based on these results, we propose a model in which Cfap53 deposited in the oocyte and the sperm participates in the organization of the zygotic MTOC to allow mitotic spindle formation.


Asunto(s)
Centriolos , Centro Organizador de los Microtúbulos , Animales , Centriolos/metabolismo , Centrosoma/metabolismo , Masculino , Centro Organizador de los Microtúbulos/metabolismo , Semen/metabolismo , Tubulina (Proteína)/metabolismo , Pez Cebra/metabolismo
4.
Dev Dyn ; 251(8): 1357-1367, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35275424

RESUMEN

BACKGROUND: Cohesinopathies is a term that refers to/covers rare genetic diseases caused by mutations in the cohesin complex proteins. The cohesin complex is a multiprotein complex that facilitates different aspects of cell division, gene transcription, DNA damage repair, and chromosome architecture. Shugoshin proteins prevent the cohesin complex from premature dissociation from chromatids during cell division. Patients with a homozygous missense mutation in SGO1, which encodes for Shugoshin1, have problems with normal pacing of the heart and gut. RESULTS: To study the role of shugoshin during embryo development, we mutated the zebrafish sgo1 gene. Homozygous sgo1 mutant embryos display various phenotypes related to different organs, including a reduced heart rate accompanied by reduced cardiac function. In addition, sgo1 mutants are vision-impaired as a consequence of structurally defective and partially non-functional photoreceptor cells. Furthermore, the sgo1 mutants display reduced food intake and early lethality. CONCLUSION: We have generated a zebrafish model of Sgo1 that showed its importance during organ development and function.


Asunto(s)
Centrómero , Pez Cebra , Animales , Proteínas de Ciclo Celular/fisiología , Centrómero/metabolismo , Cromátides/metabolismo , Proteínas Cromosómicas no Histona/genética , Pez Cebra/genética , Cohesinas
5.
Am J Hum Genet ; 109(4): 750-758, 2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-35202563

RESUMEN

Chromatin is essentially an array of nucleosomes, each of which consists of the DNA double-stranded fiber wrapped around a histone octamer. This organization supports cellular processes such as DNA replication, DNA transcription, and DNA repair in all eukaryotes. Human histone H4 is encoded by fourteen canonical histone H4 genes, all differing at the nucleotide level but encoding an invariant protein. Here, we present a cohort of 29 subjects with de novo missense variants in six H4 genes (H4C3, H4C4, H4C5, H4C6, H4C9, and H4C11) identified by whole-exome sequencing and matchmaking. All individuals present with neurodevelopmental features of intellectual disability and motor and/or gross developmental delay, while non-neurological features are more variable. Ten amino acids are affected, six recurrently, and are all located within the H4 core or C-terminal tail. These variants cluster to specific regions of the core H4 globular domain, where protein-protein interactions occur with either other histone subunits or histone chaperones. Functional consequences of the identified variants were evaluated in zebrafish embryos, which displayed abnormal general development, defective head organs, and reduced body axis length, providing compelling evidence for the causality of the reported disorder(s). While multiple developmental syndromes have been linked to chromatin-associated factors, missense-bearing histone variants (e.g., H3 oncohistones) are only recently emerging as a major cause of pathogenicity. Our findings establish a broader involvement of H4 variants in developmental syndromes.


Asunto(s)
Histonas , Pez Cebra , Animales , Cromatina , ADN , Histonas/metabolismo , Humanos , Síndrome , Pez Cebra/genética , Pez Cebra/metabolismo
6.
Cardiovasc Res ; 118(1): 226-240, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33616638

RESUMEN

AIMS: Vertebrate heart development requires the complex morphogenesis of a linear tube to form the mature organ, a process essential for correct cardiac form and function, requiring coordination of embryonic laterality, cardiac growth, and regionalized cellular changes. While previous studies have demonstrated broad requirements for extracellular matrix (ECM) components in cardiac morphogenesis, we hypothesized that ECM regionalization may fine tune cardiac shape during heart development. METHODS AND RESULTS: Using live in vivo light sheet imaging of zebrafish embryos, we describe a left-sided expansion of the ECM between the myocardium and endocardium prior to the onset of heart looping and chamber ballooning. Analysis using an ECM sensor revealed the cardiac ECM is further regionalized along the atrioventricular axis. Spatial transcriptomic analysis of gene expression in the heart tube identified candidate genes that may drive ECM expansion. This approach identified regionalized expression of hapln1a, encoding an ECM cross-linking protein. Validation of transcriptomic data by in situ hybridization confirmed regionalized hapln1a expression in the heart, with highest levels of expression in the future atrium and on the left side of the tube, overlapping with the observed ECM expansion. Analysis of CRISPR-Cas9-generated hapln1a mutants revealed a reduction in atrial size and reduced chamber ballooning. Loss-of-function analysis demonstrated that ECM expansion is dependent upon Hapln1a, together supporting a role for Hapln1a in regionalized ECM modulation and cardiac morphogenesis. Analysis of hapln1a expression in zebrafish mutants with randomized or absent embryonic left-right asymmetry revealed that laterality cues position hapln1a-expressing cells asymmetrically in the left side of the heart tube. CONCLUSION: We identify a regionalized ECM expansion in the heart tube which promotes correct heart development, and propose a novel model whereby embryonic laterality cues orient the axis of ECM asymmetry in the heart, suggesting these two pathways interact to promote robust cardiac morphogenesis.


Asunto(s)
Proteínas de la Matriz Extracelular/metabolismo , Matriz Extracelular/metabolismo , Corazón/embriología , Morfogénesis , Miocardio/metabolismo , Proteoglicanos/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Tipificación del Cuerpo , Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/genética , Regulación del Desarrollo de la Expresión Génica , Ácido Hialurónico/metabolismo , Mutación , Proteoglicanos/genética , Transducción de Señal , Transcriptoma , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética
7.
Circ Res ; 130(2): 166-180, 2022 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-34886679

RESUMEN

RATIONALE: Dextro-transposition of the great arteries (D-TGA) is a severe congenital heart defect which affects approximately 1 in 4,000 live births. While there are several reports of D-TGA patients with rare variants in individual genes, the majority of D-TGA cases remain genetically elusive. Familial recurrence patterns and the observation that most cases with D-TGA are sporadic suggest a polygenic inheritance for the disorder, yet this remains unexplored. OBJECTIVE: We sought to study the role of common single nucleotide polymorphisms (SNPs) in risk for D-TGA. METHODS AND RESULTS: We conducted a genome-wide association study in an international set of 1,237 patients with D-TGA and identified a genome-wide significant susceptibility locus on chromosome 3p14.3, which was subsequently replicated in an independent case-control set (rs56219800, meta-analysis P=8.6x10-10, OR=0.69 per C allele). SNP-based heritability analysis showed that 25% of variance in susceptibility to D-TGA may be explained by common variants. A genome-wide polygenic risk score derived from the discovery set was significantly associated to D-TGA in the replication set (P=4x10-5). The genome-wide significant locus (3p14.3) co-localizes with a putative regulatory element that interacts with the promoter of WNT5A, which encodes the Wnt Family Member 5A protein known for its role in cardiac development in mice. We show that this element drives reporter gene activity in the developing heart of mice and zebrafish and is bound by the developmental transcription factor TBX20. We further demonstrate that TBX20 attenuates Wnt5a expression levels in the developing mouse heart. CONCLUSIONS: This work provides support for a polygenic architecture in D-TGA and identifies a susceptibility locus on chromosome 3p14.3 near WNT5A. Genomic and functional data support a causal role of WNT5A at the locus.


Asunto(s)
Polimorfismo de Nucleótido Simple , Transposición de los Grandes Vasos/genética , Animales , Células Cultivadas , Humanos , Ratones , Herencia Multifactorial , Miocitos Cardíacos/metabolismo , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Transposición de los Grandes Vasos/metabolismo , Proteína Wnt-5a/genética , Proteína Wnt-5a/metabolismo , Pez Cebra
8.
Elife ; 102021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34372968

RESUMEN

Organ laterality refers to the left-right asymmetry in disposition and conformation of internal organs and is established during embryogenesis. The heart is the first organ to display visible left-right asymmetries through its left-sided positioning and rightward looping. Here, we present a new zebrafish loss-of-function allele for tbx5a, which displays defective rightward cardiac looping morphogenesis. By mapping individual cardiomyocyte behavior during cardiac looping, we establish that ventricular and atrial cardiomyocytes rearrange in distinct directions. As a consequence, the cardiac chambers twist around the atrioventricular canal resulting in torsion of the heart tube, which is compromised in tbx5a mutants. Pharmacological treatment and ex vivo culture establishes that the cardiac twisting depends on intrinsic mechanisms and is independent from cardiac growth. Furthermore, genetic experiments indicate that looping requires proper tissue patterning. We conclude that cardiac looping involves twisting of the chambers around the atrioventricular canal, which requires correct tissue patterning by Tbx5a.


Asunto(s)
Corazón/embriología , Organogénesis/genética , Factores de Transcripción/genética , Proteínas de Pez Cebra/genética , Pez Cebra/embriología , Animales , Tipificación del Cuerpo , Embrión no Mamífero/embriología , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra/metabolismo
9.
Dev Dyn ; 249(12): 1455-1469, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33103836

RESUMEN

BACKGROUND: The epicardium is the outer mesothelial layer of the heart. It encloses the myocardium and plays key roles in heart development and regeneration. It derives from the proepicardium (PE), cell clusters that appear in the dorsal pericardium (DP) close to the atrioventricular canal and the venous pole of the heart, and are released into the pericardial cavity. PE cells are advected around the beating heart until they attach to the myocardium. Bmp and Notch signaling influence PE formation, but it is unclear how both signaling pathways interact during this process in the zebrafish. RESULTS: Here, we show that the developing PE is influenced by Notch signaling derived from the endothelium. Overexpression of the intracellular receptor of notch in the endothelium enhances bmp expression, increases the number of pSmad1/5 positive cells in the DP and PE, and enhances PE formation. On the contrary, pharmacological inhibition of Notch1 impairs PE formation. bmp2b overexpression can rescue loss of PE formation in the presence of a Notch1 inhibitor, but Notch gain-of-function could not recover PE formation in the absence of Bmp signaling. CONCLUSIONS: Endothelial Notch signaling activates bmp expression in the heart tube, which in turn induces PE cluster formation from the DP layer.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Corazón/embriología , Organogénesis/fisiología , Pericardio/embriología , Receptores Notch/metabolismo , Transducción de Señal/fisiología , Animales , Diferenciación Celular/fisiología , Pericardio/metabolismo , Pez Cebra
11.
Eur J Hum Genet ; 28(5): 674-678, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31804630

RESUMEN

We report here a de novo missense variant in HIST1H4J resulting in a complex syndrome combining growth delay, microcephaly and intellectual disability. Trio whole exome sequencing (WES) revealed that the proband was heterozygous for a de novo c.274 A > G p.(K91E) variant in HIST1H4J, a gene not yet associated with human disease. The patient presented with profound intellectual disability, microcephaly, and dysmorphic facial features. Functional consequences of the identified de novo missense variant were evaluated in zebrafish embryos, where they affected general development, especially resulting in defective head organs and reduced body axis length. Our results show that the monoallelic p.K91E substitution on HIST1H4J underlies a human syndrome that is genetically and phenotypically akin to the HIST1H4C-associated neurodevelopmental disorder resulting from p.K91A and p.K91Q substitions in HIST1H4C. The highly overlapping patient phenotypes highlight functional similarities between HIST1H4J and HIST1H4C perturbations, establishing the singular importance of K91 across histone H4 genes for vertebrate development.


Asunto(s)
Anomalías Craneofaciales/genética , Discapacidades del Desarrollo/genética , Modelos Animales de Enfermedad , Histonas/genética , Discapacidad Intelectual/genética , Adolescente , Animales , Anomalías Craneofaciales/patología , Discapacidades del Desarrollo/patología , Histonas/metabolismo , Humanos , Discapacidad Intelectual/patología , Masculino , Mutación Missense , Síndrome , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
12.
Biochim Biophys Acta Mol Basis Dis ; 1866(3): 165607, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31759955

RESUMEN

Pyridox(am)ine 5'-phosphate oxidase (PNPO) catalyzes oxidation of pyridoxine 5'-phosphate (PNP) and pyridoxamine 5'-phosphate (PMP) to pyridoxal 5'-phosphate (PLP), the active form of vitamin B6. PNPO deficiency results in neonatal/infantile seizures and neurodevelopmental delay. To gain insight into this disorder we generated Pnpo deficient (pnpo-/-) zebrafish (CRISPR/Cas9 gene editing). Locomotion analysis showed that pnpo-/- zebrafish develop seizures resulting in only 38% of pnpo-/- zebrafish surviving beyond 20 days post fertilization (dpf). The age of seizure onset varied and survival after the onset was brief. Biochemical profiling at 20 dpf revealed a reduction of PLP and pyridoxal (PL) and accumulation of PMP and pyridoxamine (PM). Amino acids involved in neurotransmission including glutamate, γ-aminobutyric acid (GABA) and glycine were decreased. Concentrations of several, mostly essential, amino acids were increased in pnpo-/- zebrafish suggesting impaired activity of PLP-dependent transaminases involved in their degradation. PLP treatment increased survival at 20 dpf and led to complete normalization of PLP, PL, glutamate, GABA and glycine. However, amino acid profiles only partially normalized and accumulation of PMP and PM persisted. Taken together, our data indicate that not only decreased PLP but also accumulation of PMP may play a role in the clinical phenotype of PNPO deficiency.


Asunto(s)
Encefalopatías Metabólicas/metabolismo , Hipoxia-Isquemia Encefálica/metabolismo , Enfermedades Metabólicas/etiología , Enfermedades Metabólicas/metabolismo , Piridoxaminafosfato Oxidasa/deficiencia , Convulsiones/etiología , Convulsiones/metabolismo , Pez Cebra/metabolismo , Aminoácidos/metabolismo , Animales , Encefalopatías Metabólicas/etiología , Oxidorreductasas/metabolismo , Fosfato de Piridoxal/análogos & derivados , Fosfato de Piridoxal/metabolismo , Piridoxamina/metabolismo , Piridoxaminafosfato Oxidasa/metabolismo , Transmisión Sináptica/fisiología
13.
Elife ; 82019 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-31868166

RESUMEN

While the heart regenerates poorly in mammals, efficient heart regeneration occurs in zebrafish. Studies in zebrafish have resulted in a model in which preexisting cardiomyocytes dedifferentiate and reinitiate proliferation to replace the lost myocardium. To identify which processes occur in proliferating cardiomyocytes we have used a single-cell RNA-sequencing approach. We uncovered that proliferating border zone cardiomyocytes have very distinct transcriptomes compared to the nonproliferating remote cardiomyocytes and that they resemble embryonic cardiomyocytes. Moreover, these cells have reduced expression of mitochondrial genes and reduced mitochondrial activity, while glycolysis gene expression and glucose uptake are increased, indicative for metabolic reprogramming. Furthermore, we find that the metabolic reprogramming of border zone cardiomyocytes is induced by Nrg1/ErbB2 signaling and is important for their proliferation. This mechanism is conserved in murine hearts in which cardiomyocyte proliferation is induced by activating ErbB2 signaling. Together these results demonstrate that glycolysis regulates cardiomyocyte proliferation during heart regeneration.


Asunto(s)
Proliferación Celular , Reprogramación Celular/fisiología , Corazón/fisiología , Miocitos Cardíacos/metabolismo , Regeneración/fisiología , Transducción de Señal/fisiología , Análisis de la Célula Individual/métodos , Pez Cebra/crecimiento & desarrollo , Animales , Animales Modificados Genéticamente , Reprogramación Celular/genética , Femenino , Regulación del Desarrollo de la Expresión Génica , Genes erbB-2/genética , Genes erbB-2/fisiología , Glucólisis , Corazón/embriología , Hexoquinasa/genética , Hexoquinasa/metabolismo , Masculino , Ratones , Modelos Animales , Miocardio/metabolismo , Miocitos Cardíacos/citología , Neurregulina-1/genética , Regeneración/genética , Transducción de Señal/genética , Pez Cebra/embriología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
14.
Nat Commun ; 10(1): 4457, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31575858

RESUMEN

Mutations in genes encoding KATP channel subunits have been reported for pancreatic disorders and Cantú syndrome. Here, we report a syndrome in six patients from two families with a consistent phenotype of mild intellectual disability, similar facies, myopathy, and cerebral white matter hyperintensities, with cardiac systolic dysfunction present in the two oldest patients. Patients are homozygous for a splice-site mutation in ABCC9 (c.1320 + 1 G > A), which encodes the sulfonylurea receptor 2 (SUR2) subunit of KATP channels. This mutation results in an in-frame deletion of exon 8, which results in non-functional KATP channels in recombinant assays. SUR2 loss-of-function causes fatigability and cardiac dysfunction in mice, and reduced activity, cardiac dysfunction and ventricular enlargement in zebrafish. We term this channelopathy resulting from loss-of-function of SUR2-containing KATP channels ABCC9-related Intellectual disability Myopathy Syndrome (AIMS). The phenotype differs from Cantú syndrome, which is caused by gain-of-function ABCC9 mutations, reflecting the opposing consequences of KATP loss- versus gain-of-function.


Asunto(s)
Adenosina Trifosfato/metabolismo , Canalopatías/metabolismo , Predisposición Genética a la Enfermedad/genética , Discapacidad Intelectual/metabolismo , Enfermedades Musculares/metabolismo , Mutación , Receptores de Sulfonilureas/genética , Receptores de Sulfonilureas/metabolismo , Adolescente , Adulto , Secuencia de Aminoácidos , Animales , Cardiomegalia/genética , Cardiomegalia/metabolismo , Línea Celular , Niño , Modelos Animales de Enfermedad , Facies , Femenino , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Corazón , Cardiopatías/genética , Cardiopatías/metabolismo , Homocigoto , Humanos , Hipertricosis/genética , Hipertricosis/metabolismo , Discapacidad Intelectual/parasitología , Masculino , Complejo Mediador/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Enfermedades Musculares/genética , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/metabolismo , Trastornos del Neurodesarrollo/fisiopatología , Osteocondrodisplasias/genética , Osteocondrodisplasias/metabolismo , Linaje , Fenotipo , Rubidio , Secuenciación Completa del Genoma , Adulto Joven , Pez Cebra
15.
Cell Rep ; 28(10): 2704-2714.e5, 2019 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-31484079

RESUMEN

The human ether-a-go-go-related gene KCNH2 encodes the voltage-gated potassium channel underlying IKr, a current critical for the repolarization phase of the cardiac action potential. Mutations in KCNH2 that cause a reduction of the repolarizing current can result in cardiac arrhythmias associated with long-QT syndrome. Here, we investigate the regulation of KCNH2 and identify multiple active enhancers. A transcribed enhancer ∼85 kbp downstream of Kcnh2 physically contacts the promoters of two Kcnh2 isoforms in a cardiac-specific manner in vivo. Knockdown of its ncRNA transcript results in reduced expression of Kcnh2b and two neighboring mRNAs, Nos3 and Abcb8, in vitro. Genomic deletion of the enhancer, including the ncRNA transcription start site, from the mouse genome causes a modest downregulation of both Kcnh2a and Kcnh2b in the ventricles. These findings establish that the regulation of Kcnh2a and Kcnh2b is governed by a complex regulatory landscape that involves multiple partially redundantly acting enhancers.


Asunto(s)
Canal de Potasio ERG1/genética , Elementos de Facilitación Genéticos/genética , Regulación de la Expresión Génica , Miocardio/metabolismo , Transcripción Genética , Animales , Sistemas CRISPR-Cas/genética , Línea Celular , Canal de Potasio ERG1/metabolismo , Femenino , Sitios Genéticos , Ventrículos Cardíacos/metabolismo , Humanos , Regiones Promotoras Genéticas/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN no Traducido/genética , ARN no Traducido/metabolismo , Eliminación de Secuencia , Pez Cebra
16.
Development ; 146(13)2019 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-31175121

RESUMEN

The epicardium, the outer mesothelial layer enclosing the myocardium, plays key roles in heart development and regeneration. During embryogenesis, the epicardium arises from the proepicardium (PE), a cell cluster that appears in the dorsal pericardium (DP) close to the venous pole of the heart. Little is known about how the PE emerges from the pericardial mesothelium. Using a zebrafish model and a combination of genetic tools, pharmacological agents and quantitative in vivo imaging, we reveal that a coordinated collective movement of DP cells drives PE formation. We found that Bmp signaling and the actomyosin cytoskeleton promote constriction of the DP, which enables PE cells to extrude apically. We provide evidence that cell extrusion, which has been described in the elimination of unfit cells from epithelia and the emergence of hematopoietic stem cells, is also a mechanism for PE cells to exit an organized mesothelium and fulfil their developmental fate to form a new tissue layer, the epicardium.


Asunto(s)
Actinas/metabolismo , Proteínas Morfogenéticas Óseas/metabolismo , Movimiento Celular , Corazón/embriología , Pericardio/citología , Pericardio/embriología , Células Madre/fisiología , Animales , Animales Modificados Genéticamente , Tipificación del Cuerpo/genética , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Movimiento Celular/genética , Embrión no Mamífero , Miocardio/citología , Organogénesis/genética , Transducción de Señal/fisiología , Células Madre/citología , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
17.
Nat Commun ; 10(1): 1477, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30931947

RESUMEN

Phenotypic and biochemical categorization of humans with detrimental variants can provide valuable information on gene function. We illustrate this with the identification of two different homozygous variants resulting in enzymatic loss-of-function in LDHD, encoding lactate dehydrogenase D, in two unrelated patients with elevated D-lactate urinary excretion and plasma concentrations. We establish the role of LDHD by demonstrating that LDHD loss-of-function in zebrafish results in increased concentrations of D-lactate. D-lactate levels are rescued by wildtype LDHD but not by patients' variant LDHD, confirming these variants' loss-of-function effect. This work provides the first in vivo evidence that LDHD is responsible for human D-lactate metabolism. This broadens the differential diagnosis of D-lactic acidosis, an increasingly recognized complication of short bowel syndrome with unpredictable onset and severity. With the expanding incidence of intestinal resection for disease or obesity, the elucidation of this metabolic pathway may have relevance for those patients with D-lactic acidosis.


Asunto(s)
Acidosis Láctica/diagnóstico , Lactato Deshidrogenasas/genética , Ácido Láctico/metabolismo , Mutación con Pérdida de Función , Síndrome del Intestino Corto/metabolismo , Espasmos Infantiles/diagnóstico , Acidosis Láctica/genética , Adulto , Animales , Consanguinidad , Diagnóstico Diferencial , Homocigoto , Humanos , Lactante , Lactato Deshidrogenasas/deficiencia , Masculino , Espasmos Infantiles/genética , Pez Cebra
18.
Hum Mol Genet ; 28(1): 96-104, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30239721

RESUMEN

Loss-of-function mutations in glutaminase (GLS), the enzyme converting glutamine into glutamate, and the counteracting enzyme glutamine synthetase (GS) cause disturbed glutamate homeostasis and severe neonatal encephalopathy. We report a de novo Ser482Cys gain-of-function variant in GLS encoding GLS associated with profound developmental delay and infantile cataract. Functional analysis demonstrated that this variant causes hyperactivity and compensatory downregulation of GLS expression combined with upregulation of the counteracting enzyme GS, supporting pathogenicity. Ser482Cys-GLS likely improves the electrostatic environment of the GLS catalytic site, thereby intrinsically inducing hyperactivity. Alignment of +/-12.000 GLS protein sequences from >1000 genera revealed extreme conservation of Ser482 to the same degree as catalytic residues. Together with the hyperactivity, this indicates that Ser482 is evolutionarily preserved to achieve optimal-but submaximal-GLS activity. In line with GLS hyperactivity, increased glutamate and decreased glutamine concentrations were measured in urine and fibroblasts. In the brain (both grey and white matter), glutamate was also extremely high and glutamine was almost undetectable, demonstrated with magnetic resonance spectroscopic imaging at clinical field strength and subsequently supported at ultra-high field strength. Considering the neurotoxicity of glutamate when present in excess, the strikingly high glutamate concentrations measured in the brain provide an explanation for the developmental delay. Cataract, a known consequence of oxidative stress, was evoked in zebrafish expressing the hypermorphic Ser482Cys-GLS and could be alleviated by inhibition of GLS. The capacity to detoxify reactive oxygen species was reduced upon Ser482Cys-GLS expression, providing an explanation for cataract formation. In conclusion, we describe an inborn error of glutamate metabolism caused by a GLS hyperactivity variant, illustrating the importance of balanced GLS activity.


Asunto(s)
Glutaminasa/genética , Glutaminasa/fisiología , Adolescente , Animales , Encéfalo/metabolismo , Catarata/genética , Preescolar , Discapacidades del Desarrollo/genética , Modelos Animales de Enfermedad , Femenino , Fibroblastos , Mutación con Ganancia de Función/genética , Glutamato-Amoníaco Ligasa/genética , Glutamato-Amoníaco Ligasa/fisiología , Ácido Glutámico/genética , Ácido Glutámico/metabolismo , Glutamina/metabolismo , Células HEK293 , Humanos , Masculino , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Pez Cebra
19.
Dis Model Mech ; 11(10)2018 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-30355756

RESUMEN

The zebrafish (Danio rerio) has become a popular vertebrate model organism to study organ formation and function due to its optical clarity and rapid embryonic development. The use of genetically modified zebrafish has also allowed identification of new putative therapeutic drugs. So far, most studies have relied on broad overexpression of transgenes harboring patient-derived mutations or loss-of-function mutants, which incompletely model the human disease allele in terms of expression levels or cell-type specificity of the endogenous gene of interest. Most human genetically inherited conditions are caused by alleles carrying single nucleotide changes resulting in altered gene function. Introduction of such point mutations in the zebrafish genome would be a prerequisite to recapitulate human disease but remains challenging to this day. We present an effective approach to introduce small nucleotide changes in the zebrafish genome. We generated four different knock-in lines carrying distinct human cardiovascular-disorder-causing missense mutations in their zebrafish orthologous genes by combining CRISPR/Cas9 with a short template oligonucleotide. Three of these lines carry gain-of-function mutations in genes encoding the pore-forming (Kir6.1, KCNJ8) and regulatory (SUR2, ABCC9) subunits of an ATP-sensitive potassium channel (KATP) linked to Cantú syndrome (CS). Our heterozygous zebrafish knock-in lines display significantly enlarged ventricles with enhanced cardiac output and contractile function, and distinct cerebral vasodilation, demonstrating the causality of the introduced mutations for CS. These results demonstrate that introducing patient alleles in their zebrafish orthologs promises a broad application for modeling human genetic diseases, paving the way for new therapeutic strategies using this model organism.


Asunto(s)
Proteína 9 Asociada a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Enfermedades Cardiovasculares/genética , Edición Génica , Nucleótidos/genética , Pez Cebra/genética , Animales , Secuencia de Bases , Modelos Animales de Enfermedad , Técnicas de Sustitución del Gen , Pruebas Genéticas , Heterocigoto , Humanos , Mutación/genética
20.
Eur J Hum Genet ; 26(2): 210-219, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29348693

RESUMEN

Blepharocheilodontic syndrome (BCDS) consists of lagophthalmia, ectropion of the lower eyelids, distichiasis, euryblepharon, cleft lip/palate and dental anomalies and has autosomal dominant inheritance with variable expression. We identified heterozygous variants in two genes of the cadherin-catenin complex, CDH1, encoding E-cadherin, and CTNND1, encoding p120 catenin delta1 in 15 of 17 BCDS index patients, as was recently described in a different publication. CDH1 plays an essential role in epithelial cell adherence; CTNND1 binds to CDH1 and controls the stability of the complex. Functional experiments in zebrafish and human cells showed that the CDH1 variants impair the cell adhesion function of the cadherin-catenin complex in a dominant-negative manner. Variants in CDH1 have been linked to familial hereditary diffuse gastric cancer and invasive lobular breast cancer; however, no cases of gastric or breast cancer have been reported in our BCDS cases. Functional experiments reported here indicated the BCDS variants comprise a distinct class of CDH1 variants. Altogether, we identified the genetic cause of BCDS enabling DNA diagnostics and counseling, in addition we describe a novel class of dominant negative CDH1 variants.


Asunto(s)
Antígenos CD/genética , Cadherinas/genética , Cateninas/genética , Labio Leporino/genética , Fisura del Paladar/genética , Ectropión/genética , Mutación , Anomalías Dentarias/genética , Adolescente , Adulto , Animales , Antígenos CD/metabolismo , Cadherinas/metabolismo , Cateninas/metabolismo , Adhesión Celular , Niño , Preescolar , Labio Leporino/patología , Fisura del Paladar/patología , Ectropión/patología , Femenino , Humanos , Células MCF-7 , Masculino , Unión Proteica , Anomalías Dentarias/patología , Pez Cebra , Catenina delta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...