Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38565761

RESUMEN

Inflammation, a crucial defense mechanism, must be rigorously regulated to prevent the onset of chronic inflammation and subsequent tissue damage. Specialized pro resolving mediators (SPMs) such as lipoxin A4 (LXA4) have demonstrated their ability to facilitate the resolution of inflammation by orchestrating a transition of M1 pro-inflammatory macrophages towards an anti-inflammatory M2 phenotype. However, the hydrophobic and chemically labile nature of LXA4 necessitates the development of a delivery system capable of preserving its integrity for clinical applications. In this study, two types of emulsion were formulated using different homogenization processes:mechanical overhead stirrer (MEB for blank Emulsion and MELX for LXA4 loaded-Emulsion) or Luer-lock syringes (SEB for blank Emulsion and SELX for LXA4 loaded-Emulsion)). Following characterization, including size and droplet morphology assessment by microscopy, the encapsulation efficiency (EE) was determined using liquid chromatography-tandem mass spectrometry (LC-MS/MS). To exert control over LXA4 release, these emulsions were embedded within silanized hyaluronic acid hydrogels. A comprehensive evaluation, encompassing gel time, swelling, and degradation profiles under acidic, basic, and neutral conditions, preceded the assessment of LXA4 cumulative release using LC-MS/MS. Physicochemical results indicate that H-MELX (Mechanical overhead stirrer LXA4 Emulsion loaded-Hydrogel) exhibits superior efficiency over H-SELX (Luer-lock syringes LXA4 Emulsion loaded-Hydrogel). While both formulations stimulated pro-inflammatory cytokine secretion and promoted a pro-inflammatory macrophage phenotype, LXA4 emulsion-loaded hydrogels displayed a diminished pro-inflammatory activity compared to blank emulsion-loaded hydrogels. These findings highlight the biological efficacy of LXA4 within both systems, with H-SELX outperforming H-MELX in terms of efficiency. To the best of our knowledge, this is the first successful demonstration of the biological efficacy of LXA4 emulsion-loaded hydrogel systems on macrophage polarization. These versatile H-MELX and H-SELX formulations can be customized to enhance their biological activity making them promising tools to promote the resolution of inflammation in diverse clinical applications.

2.
Mol Biol Rep ; 50(1): 339-348, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36331745

RESUMEN

BACKGROUND: Lipoxin A4 (LXA4) is a specialized pro-resolving mediator involved in the resolution phase of inflammation that is crucial for the return of tissues to homeostasis, healing, and regenerative processes. LXA4 can modify the microenvironment via its receptor, formyl peptide receptor 2 (FPR2) and thus modulate the inflammatory response. However, the effect of exogeneous LXA4 application on polarized macrophages remains unstudied. The objective of this study was to assess the effect of LXA4 on macrophage activity and on the phenotype modulation of polarized M1 and M2 macrophages derived from THP-1 monocytes. METHODS AND RESULTS: Once differentiated, human macrophages were incubated with interleukin 4 (IL-4) and IL-13 to obtain M2-polarized macrophages or with interferon gamma and lipopolysaccharide for classical macrophage activation. The mRNA and protein expression of M1 and M2 markers confirmed the polarization of THP-1-derived macrophages. LXA4 (0-100 nM) did not affect the viability of M1 and M2 macrophages or the phagocytic activity of these cells. Gene expression of FPR2, referred as a receptor for the LXA4, was higher in M1 compared with M2, and was not modified by the LXA4 at the doses used. Moreover, LXA4 exhibited anti-inflammatory properties illustrated by the decreasing in the gene expression of pro-inflammatory cytokines (IL-6, tumor necrosis factor alpha, IL-1ß) in M1 and by the increase in the expression of anti-inflammatory cytokines (IL-10) in M2 macrophages. CONCLUSIONS: These results provide new insights regarding the potential of LXA4 to regulate the polarization state of macrophages.


Asunto(s)
Citocinas , Macrófagos , Humanos , Macrófagos/metabolismo , Citocinas/metabolismo , Fenotipo , Antiinflamatorios/farmacología
3.
BMC Oral Health ; 21(1): 276, 2021 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-34030680

RESUMEN

Endodontics is the branch of dentistry concerned with the morphology, physiology, and pathology of the human dental pulp and periradicular tissues. Human dental pulp is a highly dynamic tissue equipped with a network of resident immunocompetent cells that play major roles in the defense against pathogens and during tissue injury. However, the efficiency of these mechanisms during dental pulp inflammation (pulpitis) varies due to anatomical and physiological restrictions. Uncontrolled, excessive, or unresolved inflammation can lead to pulp tissue necrosis and subsequent bone infections called apical periodontitis. In most cases, pulpitis treatment consists of total pulp removal. Although this strategy has a good success rate, this treatment has some drawbacks (lack of defense mechanisms, loss of healing capacities, incomplete formation of the root in young patients). In a sizeable number of clinical situations, the decision to perform pulp extirpation and endodontic treatment is justifiable by the lack of therapeutic tools that could otherwise limit the immune/inflammatory process. In the past few decades, many studies have demonstrated that the resolution of acute inflammation is necessary to avoid the development of chronic inflammation and to promote repair or regeneration. This active process is orchestrated by Specialized Pro-resolving lipid Mediators (SPMs), including lipoxins, resolvins, protectins and maresins. Interestingly, SPMs do not have direct anti-inflammatory effects by inhibiting or directly blocking this process but can actively reduce neutrophil infiltration into inflamed tissues, enhance efferocytosis and bacterial phagocytosis by monocytes and macrophages and simultaneously inhibit inflammatory cytokine production. Experimental clinical application of SPMs has shown promising result in a wide range of inflammatory diseases, such as renal fibrosis, cerebral ischemia, marginal periodontitis, and cancer; the potential of SPMs in endodontic therapy has recently been explored. In this review, our objective was to analyze the involvement and potential use of SPMs in endodontic therapies with an emphasis on SPM delivery systems to effectively administer SPMs into the dental pulp space.


Asunto(s)
Endodoncia , Periodontitis Periapical , Pulpitis , Humanos , Inflamación , Mediadores de Inflamación , Lípidos , Periodontitis Periapical/tratamiento farmacológico , Pulpitis/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...