Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Clin Med ; 13(6)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38541932

RESUMEN

Introduction: Coronavirus disease 2019 (COVID-19) is a significant and novel cause of acute respiratory distress syndrome (ARDS). During the COVID-19 pandemic, there has been an increase in the incidence of cases involving pneumothorax and pneumomediastinum. However, the risk factors associated with poor outcomes in these patients remain unclear. Methods: This observational study collected clinical and imaging data from COVID-19 patients with PTX and/or PNM across five tertiary hospitals in central Italy between 1 March 2020 and 1 March 2022. This study also calculated the incidence of PTX and PNM and utilized multivariable regression analysis and Kaplan-Meier curve analysis to identify predictor factors for 28-day mortality and 3-day orotracheal intubation after PTX/PNM. This study also considered the impact of the three main variants of concern (VoCs) (alfa, delta, and omicron) circulating during the study period. Results: During the study period, a total of 11,938 patients with COVID-19 were admitted. This study found several factors independently associated with a higher risk of death in COVID-19 patients within 28 days of pulmonary barotrauma. These factors included a SOFA score ≥ 4 (OR 3.22, p = 0.013), vasopressor/inotropic therapy (OR 11.8, p < 0.001), hypercapnia (OR 2.72, p = 0.021), PaO2/FiO2 ratio < 150 mmHg (OR 10.9, p < 0.001), and cardiovascular diseases (OR 7.9, p < 0.001). This study also found that a SOFA score ≥ 4 (OR 3.10, p = 0.015), PCO2 > 45 mmHg (OR 6.0, p = 0.003), and P/F ratio < 150 mmHg (OR 2.9, p < 0.042) were factors independently associated with a higher risk of orotracheal intubation (OTI) within 3 days from PTX/PNM in patients with non-invasive mechanical ventilation. SARS-CoV-2 VoCs were not associated with 28-day mortality or the risk of OTI. The estimated cumulative probability of OTI in patients after pneumothorax was 44.0% on the first day, 67.8% on the second day, and 68.9% on the third day, according to univariable survival analysis. In patients who had pneumomediastinum only, the estimated cumulative probability of OTI was 37.5%, 46.7%, and 57.7% on the first, second, and third days, respectively. The overall incidence of PTX/PNM among hospitalized COVID-19 patients was 1.42%, which increased up to 4.1% in patients receiving invasive mechanical ventilation. Conclusions: This study suggests that a high SOFA score (≥4), the need for vasopressor/inotropic therapy, hypercapnia, and PaO2/FiO2 ratio < 150 mmHg in COVID-19 patients with pulmonary barotrauma are associated with higher rates of intubation, ICU admission, and mortality. Identifying these risk factors early on can help healthcare providers anticipate and manage these patients more effectively and provide timely interventions with appropriate intensive care, ultimately improving their outcomes.

2.
J Med Virol ; 95(6): e28831, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37246793

RESUMEN

Despite the higher transmissibility of Omicron Variant of Concern (VOC), several reports have suggested lower risk for hospitalization and severe outcomes compared to previous variants of SARS-CoV-2. This study, enrolling all COVID-19 adults admitted to a reference hospital who underwent both the S-gene-target-failure test and VOC identification by Sanger sequencing, aimed to describe the evolving prevalence of Delta and Omicron variants and to compare the main in-hospital outcomes of severity, during a trimester (December 2021 to March 2022) of VOCs' cocirculation. Factors associated with clinical progression to noninvasive ventilation (NIV)/mechanical ventilation (MV)/death within 10 days and to MV/admission to intensive care unit (ICU)/death within 28 days, were investigated through multivariable logistic regressions. Overall, VOCs were: Delta n = 130/428, Omicron n = 298/428 (sublineages BA.1 n = 275 and BA.2 n = 23). Until mid-February, Delta predominance shifted to BA.1, which was gradually displaced by BA.2 until mid-March. Participants with Omicron VOC were more likely to be older, fully vaccinated, with multiple comorbidities and to have a shorter time from symptoms' onset, and less likely to have systemic symptoms and respiratory complications. Although the need of NIV within 10 days and MV within 28 days from hospitalization and the admission to ICU were less frequent for patients with Omicron compared to those with Delta infections, mortality was similar between the two VOCs. In the adjusted analysis, multiple comorbidities and a longer time from symptoms' onset predicted 10-day clinical progression, while complete vaccination halved the risk. Multimorbidity was the only risk factor associated with 28-day clinical progression. In our population, in the first trimester of 2022, Omicron rapidly displaced Delta in COVID-19 hospitalized adults. Clinical profile and presentation differed between the two VOCs and, although Omicron infections showed a less severe clinical picture, no substantial differences for clinical progression were found. This finding suggests that any hospitalization, especially in more vulnerable individuals, may be at risk for severe progression, which is more related to the underlying frailty of patients than to the intrinsic severity of the viral variant.


Asunto(s)
COVID-19 , SARS-CoV-2 , Adulto , Humanos , SARS-CoV-2/genética , COVID-19/epidemiología , Hospitales , Progresión de la Enfermedad
3.
Medicina (Kaunas) ; 58(8)2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-36013571

RESUMEN

Background and Objectives: Background: Coronavirus disease 2019 (COVID-19) is a novel cause of Acute Respiratory Distress Syndrome (ARDS). Noninvasive ventilation (NIV) is widely used in patients with ARDS across several etiologies. Indeed, with the increase of ARDS cases due to the COVID-19 pandemic, its use has grown significantly in hospital wards. However, there is a lack of evidence to support the efficacy of NIV in patients with COVID-19 ARDS. Materials and Methods: We conducted an observational cohort study including adult ARDS COVID-19 patients admitted in a third level COVID-center in Rome, Italy. The study analyzed the rate of NIV failure defined by the occurrence of orotracheal intubation and/or death within 28 days from starting NIV, its effectiveness, and the associated relative risk of death. The factors associated with the outcomes were identified through logistic regression analysis. Results: During the study period, a total of 942 COVID-19 patients were admitted to our hospital, of which 307 (32.5%) presented with ARDS at hospitalization. During hospitalization 224 (23.8%) were treated with NIV. NIV failure occurred in 84 (37.5%) patients. At 28 days from starting NIV, moderate and severe ARDS had five-fold and twenty-fold independent increased risk of NIV failure (adjusted odds ratio, aOR = 5.01, 95% CI 2.08−12.09, and 19.95, 95% CI 5.31−74.94), respectively, compared to patients with mild ARDS. A total of 128 patients (13.5%) were admitted to the Intensive Care Unit (ICU). At 28-day from ICU admission, intubated COVID-19 patients treated with early NIV had 40% lower mortality (aOR 0.60, 95% CI 0.25−1.46, p = 0.010) compared with patients that underwent orotracheal intubation without prior NIV. Conclusions: These findings show that NIV failure was independently correlated with the severity category of COVID-19 ARDS. The start of NIV in COVID-19 patients with mild ARDS (P/F > 200 mmHg) appears to increase NIV effectiveness and reduce the risk of orotracheal intubation and/or death. Moreover, early NIV (P/F > 200 mmHg) treatment seems to reduce the risk of ICU mortality at 28 days from ICU admission.


Asunto(s)
COVID-19 , Ventilación no Invasiva , Síndrome de Dificultad Respiratoria , Insuficiencia Respiratoria , Adulto , COVID-19/complicaciones , Estudios de Cohortes , Hospitales , Humanos , Unidades de Cuidados Intensivos , Pandemias , Síndrome de Dificultad Respiratoria/etiología , Síndrome de Dificultad Respiratoria/terapia , Insuficiencia Respiratoria/etiología
4.
J Pers Med ; 12(6)2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35743740

RESUMEN

Purpose: To analyze the vaccine effect by comparing five groups: unvaccinated patients with Alpha variant, unvaccinated patients with Delta variant, vaccinated patients with Delta variant, unvaccinated patients with Omicron variant, and vaccinated patients with Omicron variant, assessing the "gravity" of COVID-19 pulmonary involvement, based on CT findings in critically ill patients admitted to Intensive Care Unit (ICU). Methods: Patients were selected by ICU database considering the period from December 2021 to 23 March 2022, according to the following inclusion criteria: patients with proven Omicron variant COVID-19 infection with known COVID-19 vaccination with at least two doses and with chest Computed Tomography (CT) study during ICU hospitalization. Wee also evaluated the ICU database considering the period from March 2020 to December 2021, to select unvaccinated consecutive patients with Alpha variant, subjected to CT study, consecutive unvaccinated and vaccinated patients with Delta variant, subjected to CT study, and, consecutive unvaccinated patients with Omicron variant, subjected to CT study. CT images were evaluated qualitatively using a severity score scale of 5 levels (none involvement, mild: ≤25% of involvement, moderate: 26−50% of involvement, severe: 51−75% of involvement, and critical involvement: 76−100%) and quantitatively, using the Philips IntelliSpace Portal clinical application CT COPD computer tool. For each patient the lung volumetry was performed identifying the percentage value of aerated residual lung volume. Non-parametric tests for continuous and categorical variables were performed to assess statistically significant differences among groups. Results: The patient study group was composed of 13 vaccinated patients affected by the Omicron variant (Omicron V). As control groups we identified: 20 unvaccinated patients with Alpha variant (Alpha NV); 20 unvaccinated patients with Delta variant (Delta NV); 18 vaccinated patients with Delta variant (Delta V); and 20 unvaccinated patients affected by the Omicron variant (Omicron NV). No differences between the groups under examination were found (p value > 0.05 at Chi square test) in terms of risk factors (age, cardiovascular diseases, diabetes, immunosuppression, chronic kidney, cardiac, pulmonary, neurologic, and liver disease, etc.). A different median value of aerated residual lung volume was observed in the Delta variant groups: median value of aerated residual lung volume was 46.70% in unvaccinated patients compared to 67.10% in vaccinated patients. In addition, in patients with Delta variant every other extracted volume by automatic tool showed a statistically significant difference between vaccinated and unvaccinated group. Statistically significant differences were observed for each extracted volume by automatic tool between unvaccinated patients affected by Alpha variant and vaccinated patients affected by Delta variant of COVID-19. Good statistically significant correlations among volumes extracted by automatic tool for each lung lobe and overall radiological severity score were obtained (ICC range 0.71−0.86). GGO was the main sign of COVID-19 lesions on CT images found in 87 of the 91 (95.6%) patients. No statistically significant differences were observed in CT findings (ground glass opacities (GGO), consolidation or crazy paving sign) among patient groups. Conclusion: In our study, we showed that in critically ill patients no difference were observed in terms of severity of disease or exitus, between unvaccinated and vaccinated patients. The only statistically significant differences were observed, with regard to the severity of COVID-19 pulmonary parenchymal involvement, between unvaccinated patients affected by Alpha variant and vaccinated patients affected by Delta variant, and between unvaccinated patients with Delta variant and vaccinated patients with Delta variant.

5.
J Clin Med ; 11(9)2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35566715

RESUMEN

(1) Background: Although COVID-19 is largely a respiratory disease, it is actually a systemic disease that has a wide range of effects that are not yet fully known. The aim of this study was to determine the incidence, predictors and outcome of non-hepatic hyperammonemia (NHH) in COVID-19 in intensive care unit (ICU); (2) Methods: This is a 3-month prospective observational study in a third-level COVID-19 hospital. The authors collected demographic, clinical, severity score and outcome data. Logistic regression analyses were performed to identify predictors of NHH; (3) Results: 156 COVID-19 patients were admitted to the ICU. The incidence of NHH was 12.2% (19 patients). The univariate analysis showed that invasive mechanical ventilation had a 6.6-fold higher risk (OR 6.66, 95% CI 0.86-51.6, p = 0.039) for NHH, while in the multiple regression analysis, there was a 7-fold higher risk for NHH-but it was not statistically significant (OR 7.1, 95% CI 0.90-56.4, p = 0.062). Demographics, clinical characteristics and mortality in the ICU at 28 days did not show a significant association with NHH. (4) Conclusions: The incidence of NHH in ICU COVID-19 patients was not low. NHH did not appear to significantly increase mortality, and all patients with non-hepatic hyperammonemia were successfully treated without further complications. However, the pathogenesis of NHH in ICU patients with COVID-19 remains a topic to be explored with further research.

6.
J Anesth Analg Crit Care ; 2(1): 36, 2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-37386603

RESUMEN

BACKGROUND: COVID­19 is a novel cause of acute respiratory distress syndrome (ARDS) that leads patients to intensive care unit (ICU) admission requiring invasive ventilation, who consequently are at risk of developing of ventilator­associated pneumonia (VAP). The aim of this study was to assess the incidence, antimicrobial resistance, risk factors, and outcome of VAP in ICU COVID-19 patients in invasive mechanical ventilation (MV). METHODS: Observational prospective study including adult ICU admissions between January 1, 2021, and June 31, 2021, with confirmed COVID-19 diagnosis were recorded daily, including demographics, medical history, ICU clinical data, etiology of VAPs, and the outcome. The diagnosis of VAP was based on multi-criteria decision analysis which included a combination of radiological, clinical, and microbiological criteria in ICU patients in MV for at least 48 h. RESULTS: Two hundred eighty-four COVID-19 patients in MV were admitted in ICU. Ninety-four patients (33%) had VAP during the ICU stay, of which 85 had a single episode of VAP and 9 multiple episodes. The median time of onset of VAP from intubation were 8 days (IQR, 5-13). The overall incidence of VAP was of 13.48 episodes per 1000 days in MV. The main etiological agent was Pseudomonas aeruginosa (39.8% of all VAPs) followed by Klebsiella spp. (16.5%); of them, 41.4% and 17.6% were carbapenem resistant, respectively. Patients during the mechanical ventilation in orotracheal intubation (OTI) had a higher incidence than those in tracheostomy, 16.46 and 9.8 episodes per 1000-MV day, respectively. An increased risk of VAP was reported in patients receiving blood transfusion (OR 2.13, 95% CI 1.26-3.59, p = 0.005) or therapy with Tocilizumab/Sarilumab (OR 2.08, 95% CI 1.12-3.84, p = 0.02). The pronation and PaO2/FiO2 ratio at ICU admission were not significantly associated with the development of VAPs. Furthermore, VAP episodes did not increase the risk of death in ICU COVID-19 patients. CONCLUSIONS: COVID-19 patients have a higher incidence of VAP compared to the general ICU population, but it is similar to that of ICU ARDS patients in the pre-COVID-19 period. Interleukin-6 inhibitors and blood transfusions may increase the risk of VAP. The widespread use of empirical antibiotics in these patients should be avoided to reduce the selecting pressure on the growth of multidrug-resistant bacteria by implementing infection control measures and antimicrobial stewardship programs even before ICU admission.

7.
J Clin Med ; 10(23)2021 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-34884310

RESUMEN

(1) Background: COVID-19 is a novel cause of acute respiratory distress syndrome (ARDS). Indeed, with the increase of ARDS cases due to the COVID-19 pandemic, there has also been an increase in the incidence of cases with pneumothorax (PNX) and pneumomediastinum (PNM). However, the incidence and the predictors of PNX/PMN in these patients are currently unclear and even conflicting. (2) Methods: The present observational study analyzed the incidence of barotrauma (PNX/PNM) in COVID-19 patients with moderate-severe ARDS hospitalized in a year of the pandemic, also focusing on the three waves occurring during the year, and treated with positive-pressure ventilation (PPV). We collected demographic and clinical data. (3) Results: During this period, 40 patients developed PNX/PNM. The overall incidence of barotrauma in all COVID-19 patients hospitalized in a year was 1.6%, and in those with moderate-severe ARDS in PPV was 7.2% and 3.8 events per 1000 positive-pressure ventilator days. The incidence of barotrauma in moderate-severe ARDS COVID-19 patients during the three waves was 7.8%, 7.4%, and 8.7%, respectively. Treatment with noninvasive respiratory support alone was associated with an incidence of barotrauma of 9.1% and 2.6 events per 1000 noninvasive ventilator days, of which 95% were admitted to the ICU after the event, due to a worsening of respiratory parameters. The incidence of barotrauma of ICU COVID-19 patients in invasive ventilation over a year was 5.8% and 2.7 events per 1000 invasive ventilator days. There was no significant difference in demographics and clinical features between the barotrauma and non-barotrauma group. The mortality was higher in the barotrauma group (17 patients died, 47.2%) than in the non-barotrauma group (170 patients died, 37%), although this difference was not statistically significant (p = 0.429). (4) Conclusions: The incidence of PNX/PNM in moderate-severe ARDS COVID-19 patients did not differ significantly between the three waves over a year, and does not appear to be very different from that in ARDS patients in the pre-COVID era. The barotrauma does not appear to significantly increase mortality in COVID-19 patients with moderate-severe ARDS if protective ventilation strategies are applied. Attention should be paid to the risk of barotrauma in COVID-19 patients in noninvasive ventilation because the event increases the probability of admission to the intensive care unit (ICU) and intubation.

8.
J Clin Med ; 10(18)2021 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-34575230

RESUMEN

BACKGROUND: critically ill patients with SARS-CoV-2 infection present a hypercoagulable condition. Anticoagulant therapy is currently recommended to reduce thrombotic risk, leading to potentially severe complications like spontaneous bleeding (SB). Percutaneous transcatheter arterial embolization (PTAE) can be life-saving in critical patients, in addition to medical therapy. We report a major COVID-19 Italian Research Hospital experience during the pandemic, with particular focus on indications and technique of embolization. METHODS: We retrospectively included all subjects with SB and with a microbiologically confirmed SARS-CoV-2 infection, over one year of pandemic, selecting two different groups: (a) patients treated with PTAE and medical therapy; (b) patients treated only with medical therapy. Computed tomography (CT) scan findings, clinical conditions, and biological findings were collected. RESULTS: 21/1075 patients presented soft tissue SB with an incidence of 1.95%. 10/21 patients were treated with PTAE and medical therapy with a 30-days survival of 70%. Arterial blush, contrast late enhancement, and dimensions at CT scan were found discriminating for the embolization (p < 0.05). CONCLUSIONS: PTAE is an important tool in severely ill, bleeding COVID-19 patients. The decision for PTAE of COVID-19 patients must be carefully weighted with particular attention paid to the clinical and biological condition, hematoma location and volume.

9.
J Clin Med ; 10(15)2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34362118

RESUMEN

BACKGROUND: The benefits and timing of percutaneous dilatational tracheostomy (PDT) in Intensive Care Unit (ICU) COVID-19 patients are still controversial. PDT is considered a high-risk procedure for the transmission of SARS-CoV-2 to healthcare workers (HCWs). The present study analyzed the optimal timing of PDT, the clinical outcomes of patients undergoing PDT, and the safety of HCWs performing PDT. METHODS: Of the 133 COVID-19 patients who underwent PDT in our ICU from 1 April 2020 to 31 March 2021, 13 patients were excluded, and 120 patients were enrolled. A trained medical team was dedicated to the PDT procedure. Demographic, clinical history, and outcome data were collected. Patients who underwent PDT were stratified into two groups: an early group (PDT ≤ 12 days after orotracheal intubation (OTI) and a late group (>12 days after OTI). An HCW surveillance program was also performed. RESULTS: The early group included 61 patients and the late group included 59 patients. The early group patients had a shorter ICU length of stay and fewer days of mechanical ventilation than the late group (p < 0.001). On day 7 after tracheostomy, early group patients required fewer intravenous anesthetic drugs and experienced an improvement of the ventilation parameters PaO2/FiO2 ratio, PEEP, and FiO2 (p < 0.001). No difference in the case fatality ratio between the two groups was observed. No SARS-CoV-2 infections were reported in the HCWs performing the PDTs. CONCLUSIONS: PDT was safe and effective for COVID-19 patients since it improved respiratory support parameters, reduced ICU length of stay and duration of mechanical ventilation, and optimized the weaning process. The procedure was safe for all HCWs involved in the dedicated medical team. The development of standardized early PDT protocols should be implemented, and PDT could be considered a first-line approach in ICU COVID-19 patients requiring prolonged mechanical ventilation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...