Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 13(4)2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38502050

RESUMEN

Little is known about the effect of nitrogen nutrition on seedling susceptibility to seed-borne pathogens. We have previously shown that seedlings grown under high nitrate (5 mM) conditions are less susceptible than those grown under low nitrate (0.1 mM) and ammonium (5 mM) in the Arabidopsis-Alternaria brassicicola pathosystem. However, it is not known how seedling metabolism is modulated by nitrogen nutrition, nor what is its response to pathogen infection. Here, we addressed this question using the same pathosystem and nutritive conditions, examining germination kinetics, seedling development, but also shoot ion contents, metabolome, and selected gene expression. Nitrogen nutrition clearly altered the seedling metabolome. A similar metabolomic profile was observed in inoculated seedlings grown at high nitrate levels and in not inoculated-seedlings. High nitrate levels also led to specific gene expression patterns (e.g., polyamine metabolism), while other genes responded to inoculation regardless of nitrogen supply conditions. Furthermore, the metabolites best correlated with high disease symptoms were coumarate, tyrosine, hemicellulose sugars, and polyamines, and those associated with low symptoms were organic acids (tricarboxylic acid pathway, glycerate, shikimate), sugars derivatives and ß-alanine. Overall, our results suggest that the beneficial effect of high nitrate nutrition on seedling susceptibility is likely due to nutritive and signaling mechanisms affecting developmental plant processes detrimental to the pathogen. In particular, it may be due to a constitutively high tryptophan metabolism, as well as down regulation of oxidative stress caused by polyamine catabolism.

2.
Int J Mol Sci ; 24(11)2023 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-37298664

RESUMEN

Over the past decade, plant biostimulants have been increasingly used in agriculture as environment-friendly tools that improve the sustainability and resilience of crop production systems under environmental stresses. Protein hydrolysates (PHs) are a main category of biostimulants produced by chemical or enzymatic hydrolysis of proteins from animal or plant sources. Mostly composed of amino acids and peptides, PHs have a beneficial effect on multiple physiological processes, including photosynthetic activity, nutrient assimilation and translocation, and also quality parameters. They also seem to have hormone-like activities. Moreover, PHs enhance tolerance to abiotic stresses, notably through the stimulation of protective processes such as cell antioxidant activity and osmotic adjustment. Knowledge on their mode of action, however, is still piecemeal. The aims of this review are as follows: (i) Giving a comprehensive overview of current findings about the hypothetical mechanisms of action of PHs; (ii) Emphasizing the knowledge gaps that deserve to be urgently addressed with a view to efficiently improve the benefits of biostimulants for different plant crops in the context of climate change.


Asunto(s)
Antifibrinolíticos , Hidrolisados de Proteína , Animales , Hidrolisados de Proteína/farmacología , Agricultura , Aminoácidos , Cambio Climático
3.
Plant Methods ; 18(1): 131, 2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36482365

RESUMEN

BACKGROUND: Seedling growth is an early phase of plant development highly susceptible to environmental factors such as soil nitrogen (N) availability or presence of seed-borne pathogens. Whereas N plays a central role in plant-pathogen interactions, its role has never been studied during this early phase for the interaction between Arabidopsis thaliana and Alternaria brassicicola, a seed-transmitted necrotrophic fungus. The aim of the present work was to develop an in vitro monitoring system allowing to study the impact of the fungus on A. thaliana seedling growth, while modulating N nutrition. RESULTS: The developed system consists of square plates placed vertically and filled with nutrient agar medium allowing modulation of N conditions. Seeds are inoculated after sowing by depositing a droplet of conidial suspension. A specific semi-automated image analysis pipeline based on the Ilastik software was developed to quantify the impact of the fungus on seedling aerial development, calculating an index accounting for every aspect of fungal impact, namely seedling death, necrosis and developmental delay. The system also permits to monitor root elongation. The interest of the system was then confirmed by characterising how N media composition [0.1 and 5 mM of nitrate (NO3-), 5 mM of ammonium (NH4+)] affects the impact of the fungus on three A. thaliana ecotypes. Seedling development was strongly and negatively affected by the fungus. However, seedlings grown with 5 mM NO3- were less susceptible than those grown with NH4+ or 0.1 mM NO3-, which differed from what was observed with adult plants (rosette stage). CONCLUSIONS: The developed monitoring system allows accurate determination of seedling growth characteristics (both on aerial and root parts) and symptoms. Altogether, this system could be used to study the impact of plant nutrition on susceptibility of various genotypes to fungi at the seedling stage.

4.
Artículo en Inglés | MEDLINE | ID: mdl-35777257

RESUMEN

Glucosinolates and camalexin are secondary metabolites that, as phytoanticipins and phytoalexins, play a crucial role in plant defence. The present work proposes an improved analytical method for routine analysis and quantification of glucosinolates and camalexin in brassicaceous small-sized samples by using the very specific desulfation process of glucosinolates analysis and the specificity of fluorescence detection for camalexin analysis. The approach is based on a simultaneous ultrasound-assisted extraction followed by a purification on an anion-exchange column. Final analyses are conducted by HPLC-UV-MS for desulfo-glucosinolates and HPLC coupled to a fluorescence detector (HPLC-FLD) for camalexin. The method is linear for glucosinolates (50-3500 µM) and camalexin (0.025-5 µg.mL-1) with an LOD/LOQ of 3.8/12.6 µM and 0.014/0.046 µg.mL-1 respectively. The method demonstrated adequate precision, accuracy and trueness on certified reference rapeseed. A practical application of our approach was conducted on different Brassicaceae genera (Barbarea vulgaris, Brassica nigra, Capsella bursa-pastoris, Cardamine hirsuta, Coincya monensis, Sinapis arvensis, and Sisymbrium officinale) and Arabidopsis thaliana genotypes (Columbia and Wassilewskija). Futhermore, different plant organs (seeds and leaves) were analysed, previously inoculated or not with the pathogenic fungus Alternaria brassicicola.


Asunto(s)
Arabidopsis , Brassicaceae , Arabidopsis/química , Brassicaceae/química , Brassicaceae/metabolismo , Cromatografía Liquida , Glucosinolatos/análisis , Glucosinolatos/química , Indoles/metabolismo , Tiazoles/metabolismo
5.
Int J Mol Sci ; 23(13)2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35806343

RESUMEN

Water deficit causes substantial yield losses that climate change is going to make even more problematic. Sustainable agricultural practices are increasingly developed to improve plant tolerance to abiotic stresses. One innovative solution amongst others is the integration of plant biostimulants in agriculture. In this work, we investigate for the first time the effects of the biostimulant -Leafamine®-a protein hydrolysate on greenhouse lettuce (Lactuca sativa L.) grown under well-watered and water-deficit conditions. We examined the physiological and metabolomic water deficit responses of lettuce treated with Leafamine® (0.585 g/pot) or not. Root application of Leafamine® increased the shoot fresh biomass of both well-watered (+40%) and deficit-irrigated (+20%) lettuce plants because the projected leaf area increased. Our results also indicate that Leafamine® application could adjust the nitrogen metabolism by enhancing the total nitrogen content, amino acid (proline) contents and the total protein level in lettuce leaves, irrespective of the water condition. Osmolytes such as soluble sugars and polyols, also increased in Leafamine®-treated lettuce. Our findings suggest that the protective effect of Leafamine is a widespread change in plant metabolism and could involve ABA, putrescine and raffinose.


Asunto(s)
Aminoácidos , Lactuca , Aminoácidos/metabolismo , Lactuca/metabolismo , Nitrógeno/metabolismo , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Agua/química
6.
Physiol Plant ; 174(1): e13621, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34989007

RESUMEN

The impact of the form of nitrogen (N) source (nitrate versus ammonium) on the susceptibility to Alternaria brassicicola, a necrotrophic fungus, has been examined in Arabidopsis thaliana at the rosette stage. Nitrate nutrition was found to increase fungal lesions considerably. There was a similar induction of defence gene expression following infection under both N nutritions, except for the phytoalexin deficient 3 gene, which was overexpressed with nitrate. Nitrate also led to a greater nitric oxide production occurring in planta during the saprophytic growth and lower nitrate reductase (NIA1) expression 7 days after inoculation. This suggests that nitrate reductase-dependent nitric oxide production had a dual role, whereby, despite its known role in the generic response to pathogens, it affected plant metabolism, and this facilitated fungal infection. In ammonium-grown plants, infection with A. brassicicola induced a stronger gene expression of ammonium transporters and significantly reduced the initially high ammonium content in the leaves. There was a significant interaction between N source and inoculation (presence versus absence of the fungus) on the total amino acid content, while N nutrition reconfigured the spectrum of major amino acids. Typically, a higher content of total amino acid, mainly due to a stronger increase in asparagine and glutamine, is observed under ammonium nutrition while, in nitrate-fed plants, glutamate was the only amino acid which content increased significantly after fungal inoculation. N nutrition thus appears to control fungal infection via a complex set of signalling and nutritional events, shedding light on how nitrate availability can modulate disease susceptibility.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Alternaria , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Nitrógeno/metabolismo , Enfermedades de las Plantas/microbiología
7.
Front Plant Sci ; 12: 794488, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35173750

RESUMEN

Various adaptive mechanisms can ensure that seedlings are established at the most favourable time and place. These mechanisms include seed dormancy i.e., incapacity to germinate in any environment without a specific environmental trigger and inhibition i.e., incapacity to germinate in an unfavourable environment (water availability, temperature: thermoinhibition and light). The objective of this research was to study in the temperate range for germination of forage and turf grass species perennial ryegrass, if the thermal requirements for germination are under genetic controlled and could be selectively bred. Two divergent selections of three cycles were realized on a natural population: one to select for the capacity to germinate at 10°C vs. the impossibility to germinate at 10°C, and one to select for the capacity to germinate at 32°C vs. the impossibility to germinate at 32°C. Seeds of all the lots obtained from the two divergent selections were then germinated at constant temperatures from 5 to 35°C to evaluate their germination ability. Concerning the positive selection, the first cycle of positive selection at 10°C was highly efficient with a very strong increase in the germination percentage. However, afterward no selection effect was observed during the next two cycles of positive selection. By contrast, the positive selection at 32°C was efficient during all cycles with a linear increase of the percentage of germination at 32°C. Concerning the negative selection, we observed only a large positive effect of the first cycle of selection at 10°C. These findings demonstrate that seed thermoinhibition at 10 and 32°C observed in a natural population of perennial ryegrass has a genetic basis and a single recessive gene seems to be involved at 10°C.

8.
Physiol Plant ; 170(2): 227-247, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32492180

RESUMEN

Seedling pre-emergence is a critical phase of development for successful crop establishment because of its susceptibility to environmental conditions. In a context of reduced use of inorganic fertilizers, the genetic bases of the response of seedlings to nitrate supply received little attention. This issue is important even in legumes where nitrate absorption starts early after germination, before nodule development. Natural variation of traits characterizing seedling growth in the absence or presence of nitrate was investigated in a core collection of 192 accessions of Medicago truncatula. Plasticity indexes to the absence of nitrate were calculated. The genetic determinism of the traits was dissected by genome-wide association study (GWAS). The absence of nitrate affected seed biomass mobilization and root/shoot length ratio. However, the large range of genetic variability revealed different seedling performances within natural diversity. A principal component analysis (PCA) carried out with plasticity indexes highlighted four physiotypes of accessions differing in relationships between seedling elongation and seed biomass partitioning traits in response to the absence of nitrate. Finally, GWAS revealed 45 associations with single or combined traits corresponding to coordinates of accessions on PCA, as well as two clusters of genes encoding sugar transporters and glutathione transferases surrounding loci associated with seedling elongation traits.


Asunto(s)
Medicago truncatula/genética , Plantones/genética , Estudio de Asociación del Genoma Completo , Germinación , Semillas
9.
Plant Cell Environ ; 41(9): 2183-2194, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29543987

RESUMEN

Seeds mainly acquire their physiological quality during maturation, whereas oxidative conditions reign within cells triggering protein carbonylation. To better understand the role of this protein modification in legume seeds, we compared by proteomics patterns of carbonylated proteins in maturing seeds of Medicago truncatula naturally desiccated or prematurely dried, a treatment known to impair seed quality acquisition. In both cases, protein carbonylation increased in these seeds, accompanying water removal. We identified several proteins whose extent of carbonylation varied when comparing natural desiccation and premature drying and that could therefore be responsible for the impairment of seed quality acquisition or expression. In particular, we focused on PM34, a protein specific to seeds exhibiting a high sensitivity to carbonylation and of which function in dicotyledons was not known before. PM34 proved to have a cellulase activity presumably associated with cell elongation, a process required for germination and subsequent seedling growth. We discuss the possibility that PM34 (abundance or redox state) could be used to assess crop seed quality.


Asunto(s)
Medicago truncatula/fisiología , Proteínas de Plantas/metabolismo , Carbonilación Proteica , Semillas/crecimiento & desarrollo , Celulasa/metabolismo , Germinación , Proteínas de Plantas/genética , Semillas/metabolismo , Deshidrogenasas del Alcohol de Azúcar/metabolismo
10.
Physiol Plant ; 156(1): 108-24, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26303328

RESUMEN

Hypocotyl elongation in the dark is a crucial process to ensure seedling emergence. It relies both on the cell number and cell length. The contribution of these two factors to the maximal hypocotyl length and the impact of environmental conditions on this contribution are not known. This is surprising considering the agronomic and economical importance of seedling emergence in crop establishment. Using 14 genotypes from a nested core collection representing Medicago truncatula (barrel medic) natural variation, we investigated how epidermal cell number and cell length contribute to hypocotyl length under optimal, low temperature (8°C) and water deficit (-0.50 MPa) conditions. Both cell number and length vary according to genotypes and contribute to maximal hypocotyl length differences between genotypes. This contribution, however, depends on growth conditions. Cell number is the major contributor under optimal conditions (60%) whereas cell length becomes the major determinant under stress. Maximal hypocotyl length is correlated with hypocotyl elongation rate under both stresses but not under optimal condition, revealing contrasted genotypes for cell elongation capacity under stress. To identify the genetic regulators determining cell number and cell length, quantitative trait loci (QTLs) were detected using a recombinant inbred lines population exhibiting segregation in maximal hypocotyl length. Two QTLs controlling cell number and three QTLs controlling cell length at low temperature were detected. One QTL for cell number and two for cell length were found to be associated with hypocotyl length under low temperature. This study provides new information to improve seedling emergence under abiotic stress.


Asunto(s)
Hipocótilo/fisiología , Medicago truncatula/fisiología , Sitios de Carácter Cuantitativo/genética , Recuento de Células , Tamaño de la Célula , Mapeo Cromosómico , Frío , Genotipo , Hipocótilo/citología , Hipocótilo/genética , Hipocótilo/crecimiento & desarrollo , Medicago truncatula/citología , Medicago truncatula/genética , Medicago truncatula/crecimiento & desarrollo , Fenotipo , Plantones/citología , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/fisiología , Estrés Fisiológico
11.
Plant Sci ; 217-218: 18-26, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24467892

RESUMEN

Hypocotyl growth is a key characteristic for plant emergence, influenced by environmental conditions, particularly temperature, and varying among genotypes. Cellular changes in Medicago truncatula hypocotyl were characterized to study the impact of the environment on heterotrophic growth and analyze differences between genotypes. The number and length of epidermal cells, ploidy levels, and sugar contents were measured in hypocotyls grown in the dark at 20 °C and 10 °C using two genotypes with contrasting maximum hypocotyl length. Hypocotyl elongation in the dark was due to cell elongation and not to an increase in cell number. A marked increase in cell ploidy level was observed just after germination and until mid elongation of the hypocotyl under all treatments. Larger ploidy levels were also observed in the genotype with the shorter hypocotyl and in cold conditions, but they were associated with larger cells. The increase in ploidy level and in cell volume was concomitant with a marked increase in glucose and fructose contents in the hypocotyl. Finally, differences in hypocotyl length were mainly due to different number of epidermal cells in the seed embryo, shown as a key characteristic of genotypic differences, whereas temperature during hypocotyl growth affected cell volume.


Asunto(s)
Hipocótilo/crecimiento & desarrollo , Medicago truncatula/embriología , Metabolismo de los Hidratos de Carbono , Fructosa/metabolismo , Genotipo , Germinación , Glucosa/metabolismo , Hipocótilo/citología , Medicago truncatula/genética , Medicago truncatula/metabolismo , Ploidias , Plantones/crecimiento & desarrollo , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA