Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Access Microbiol ; 5(9)2023.
Artículo en Inglés | MEDLINE | ID: mdl-37841096

RESUMEN

In India, limited studies are available on the epidemiological aspects of methicillin-resistant Staphylococcus aureus (MRSA) infections in both animal and human settings. Herein, we investigated the prevalence, antimicrobial resistance profile and molecular characteristics of MRSA isolates recovered from cattle using the One Health approach. Out of 66 mecA-positive staphylococci, species-specific multiplex PCR detected 24 % (n=16) of isolates as MRSA. Maximum antibiotic resistance was seen against cloxacillin (94 %, n=15) and least for enrofloxacin and cephalothin (each 13 %, n=2). Overall, 13 % (n=2) of MRSA isolates were multidrug-resistant. Molecular characterization by SCCmec typing identified 88 % (n=14) of MRSA isolates as type V. Twelve isolates (75 %) belonged to novel spa-type t17242, of which 67 % (n=8) belonged to agr type I. MLST analysis revealed ST 1687 (50 %, n=8) as the most predominant sequence type. Circulation of different MRSA clones among the cattle populace offers a risk of transmission to humans through direct contact, food chain or environmental contamination. Thus, continuous monitoring of MRSA strains is imperative for early diagnosis and for establishing effective treatment strategies to restrain the disease burden caused by MRSA infections.

2.
Infect Genet Evol ; 100: 105257, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35219866

RESUMEN

ß-lactamase mediated resistance in Escherichia coli is a significant problem that requires immediate attention. Herein, we aim to characterize and understand the dynamics of the genetic determinants of ß-lactam resistance (i.e. ESBL, AmpC, and MBL) in E. coli. Out of 203 E. coli isolates, genetic determinants of ß-lactam resistance were identified in 50% (n = 101) of isolates. ESBL, AmpC, and MBL resistance determinants were detected in 78%, 40%, and 18% of isolates, respectively with blaCTX-M group 4 (48%), blaCMY (40%), and blaSIM (33%) as the most prevalent ß-lactam resistance genes. Among these isolates, 45% harbored plasmid replicon types, with L/M (40%) and Y (33%) as the most dominant replicon types. Integrons were detected in 40% of such isolates, with Class-1 and Class-3 representing 62% and 55%, respectively. Overall, we observed high rate of genetic determinants of ß-lactam-resistance in E. coli isolates recovered from patients in clinical settings. The co-occurrence of antimicrobial resistance genes and mobile genetic elements in a high percentage of isolates is a major concern and relates to complex resistance mechanisms. To combat the serious threat of antimicrobial resistance, it is imperative to develop strategies for robust surveillance and understand the molecular basis of resistance acquisition and transmission.


Asunto(s)
Infecciones por Escherichia coli , Escherichia coli , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Infecciones por Escherichia coli/epidemiología , Humanos , Plásmidos/genética , Resistencia betalactámica/genética , beta-Lactamasas/genética , beta-Lactamas/farmacología
3.
J Glob Antimicrob Resist ; 17: 209-215, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30634056

RESUMEN

OBJECTIVES: The aim of this study was to identify and characterise probable extended-spectrum ß-lactamase (ESBL)-, AmpC lactamase- and/or metallo-ß-lactamase (MBL)-producing Escherichia coli variants circulating in the livestock and poultry environment to establish their epidemiological significance, genetic diversity, antimicrobial resistance (AMR) trends and virulence. METHODS: The culture method and E. coli-specific multiplex PCR identified 78 E. coli strains from faecal samples of healthy livestock and poultry. The antibiogram was determined by the disk diffusion and minimum inhibitory concentration (MIC) methods. Antimicrobial-resistant E. coli isolates were screened for the presence of ESBL, AmpC and MBL genes. Isolates were further characterised by plasmid replicon typing, integron assay and virulence gene analysis. Genetic diversity was assessed by random amplification of polymorphic DNA (RAPD) analysis and multilocus sequence typing (MLST). RESULTS: ESBL (CTX-M group 1, CTX-M group 4, TEM), AmpC (EBC, FOX, CMY, DHA) and MBL (IMP, SIM) resistance determinants were identified in 75%, 19% and 6% of isolates, respectively. Nine plasmid replicon types were distributed among resistant E. coli strains, with the most common plasmid replicon types being L/M and Y. Integrons were detected in 19% of E. coli isolates. RAPD analysis categorised the E. coli isolates into three clusters. MLST revealed seven different sequence types (STs), with ST10 being the most common. CONCLUSIONS: This study demonstrated a high prevalence of animals carrying potential ESBL- and AmpC-producing E. coli and emphasises the need for rigorous surveillance in the animal sector to identify critical control points conducive to prevent the rapid dissemination of AMR.


Asunto(s)
Proteínas Bacterianas/genética , Farmacorresistencia Bacteriana Múltiple/genética , Escherichia coli/genética , Ganado/microbiología , Epidemiología Molecular , Aves de Corral/microbiología , beta-Lactamasas/genética , Animales , Antibacterianos/farmacología , Escherichia coli/efectos de los fármacos , Escherichia coli/aislamiento & purificación , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/veterinaria , Heces/microbiología , Genes Bacterianos/genética , Variación Genética , India , Pruebas de Sensibilidad Microbiana , Tipificación de Secuencias Multilocus , Plásmidos , Enfermedades de las Aves de Corral , Técnica del ADN Polimorfo Amplificado Aleatorio , Replicón , Virulencia/genética
4.
Vet World ; 12(11): 1760-1768, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32009754

RESUMEN

BACKGROUND AND AIM: Methicillin-resistant staphylococci are among the emerging pathogens which have become a threat to both human and animal health. The present investigation intended to examine the occurrence and the molecular characteristics of methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-resistant coagulase-negative staphylococci (MRCoNS) recovered from cattle, its handlers, and their environment. MATERIALS AND METHODS: A total of 666 specimens were subjected to culture method and genus-specific polymerase chain reaction (PCR) for the identification of Staphylococcus. Methicillin resistance was substantiated by PCR identification of mecA and mecC resistance determinants. Species-specific identification of mecA positive isolates was conducted by multiplex PCR. The unidentified species were deciphered by 16S rRNA gene sequencing approach. The mecA positive isolates were further characterized by staphylococcal cassette chromosome mec (SCCmec) typing and multilocus sequence typing (MLST). RESULTS: Duplex PCR identified 728 Staphylococcus isolates, of which 66 (9%) were positive for mecA gene. MRSA constituted 24% of the total mecA positive isolates. Among MRCoNS, Staphylococcus epidermidis (42%), and Staphylococcus haemolyticus (11%) were the most common species identified. Overall, 47% of the mecA positive isolates belonged to SCCmec type V. MLST analysis showed eight different sequence types (STs) among MRSA isolates of which five were novel STs. Among methicillin-resistant S. epidermidis, 19 different STs were found, of which nine novel STs were detected. CONCLUSION: The increase in the prevalence of mecA positive staphylococci, especially MRCoNS in cattle is a great concern in view of their transmission potential. Hence, continuous monitoring and molecular characterization of methicillin-resistant staphylococci should be elucidated in human and animal sectors so as to prevent the spread of these resistant pathogens.

5.
Genome Announc ; 6(17)2018 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-29700135

RESUMEN

We report here the draft genome sequence of a multidrug-resistant Escherichia coli strain (NIVEDI-P44) isolated from a chicken fecal sample. The estimated genome size is 4.76 Mb, with a G+C content of 50.65%. The genome harbors multiple antibiotic resistance genes, blaDHA-1, mph(A), strA, strB, dfrA14, sul-2, tet(A), and qnrS1.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...