Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Chemistry ; 18(14): 4250-7, 2012 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-22374704

RESUMEN

Chemically converted graphene (CCG) covalently linked with porphyrins has been prepared by a Suzuki coupling reaction between iodophenyl-functionalized CCG and porphyrin boronic ester. The covalently linked CCG-porphyrin composite was designed to possess a short, rigid phenylene spacer between the porphyrin and the CCG. The composite material formed stable dispersions in DMF and the structure was characterized by spectroscopic, thermal, and microscopic measurements. In steady-state photoluminescence spectra, the emission from the porphyrin linked to the CCG was quenched strongly relative to that of the porphyrin reference. Fluorescence lifetime and femtosecond transient absorption measurements of the porphyrin-linked CCG revealed a short-lived porphyrin singlet excited state (38 ps) without yielding the porphyrin radical cation, thereby substantiating the occurrence of energy transfer from the porphyrin excited state to the CCG and subsequent rapid decay of the CCG excited state to the ground state. Consistently, the photocurrent action spectrum of a photoelectrochemical device with a SnO(2) electrode coated with the porphyrin-linked CCG exhibited no photocurrent response from the porphyrin absorption. The results obtained here provide deep insight into the interaction between graphenes and π-conjugated systems in the excited and ground states.

3.
Nanoscale ; 3(4): 1845-9, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21384044

RESUMEN

Single-walled carbon nanotube (SWCNT) thin films, containing a high-density of semiconducting nanotubes, were obtained by a gel-centrifugation method. The agarose gel concentration and centrifugation force were optimized to achieve high semiconducting and metallic nanotube separation efficiency at 0.1 wt% agarose gel and 18,000g. The thickness of SWCNT films can be precisely controlled from 65 to 260 nm with adjustable transparency. These SWCNT films were applied in photoelectrochemical devices. Photocurrents generated by semiconducting SWCNT enriched films are 15-35% higher than those by unsorted SWCNT films. This is because of reducing exciton recombination channels as a result of the removal of metallic nanotubes. Thinner films generate higher photocurrents because charge carriers have less chances going in metallic nanotubes for recombination, before they can reach electrodes. Developing more scalable and selective methods for high purity semiconducting SWCNTs is important to further improve the photocurrent generation efficiency by using SWCNT-based photoelectrochemical devices.


Asunto(s)
Conductometría/instrumentación , Membranas Artificiales , Nanotecnología/instrumentación , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestructura , Fotometría/instrumentación , Semiconductores , Diseño de Equipo , Análisis de Falla de Equipo
4.
Chem Commun (Camb) ; 46(32): 5969-71, 2010 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-20614072

RESUMEN

Photo- and thermal-responsive polymers containing azobenzene units in the main chain have been utilized as removable dispersants for single-walled carbon nanotubes (SWNTs) in organic solvents. Intermolecular interactions between SWNTs and the polymers are reversibly controllable by tuning the trans-cis composition.


Asunto(s)
Compuestos Azo/química , Nanotubos de Carbono/química , Polímeros/química , Isomerismo , Solventes/química , Espectroscopía Infrarroja Corta , Temperatura
6.
J Phys Chem B ; 114(45): 14287-97, 2010 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-20136111

RESUMEN

Good solvent effects of C(70) cluster formations and their electron-transporting and photoelectrochemical properties have been systematically examined for the first time. Nano-to-micrometer scale assemblies of C(70) with different morphologies were prepared by rapidly injecting poor solvent (i.e., acetonitrile) into a solution of C(70) dissolved in various good solvents (i.e., benzene, toluene, chlorobenzene, etc). The cluster morphology engineering was successfully achieved by changing the good solvent, yielding the spherical, rodlike, or platelike clusters in the mixed solvents. The clusters of C(70) were electrophoretically deposited onto a nanostructured SnO(2) electrode to examine the photoelectrochemical properties under the white light or monochromatic light illumination. The maximum incident photon-to-current efficiency (IPCE) varied from 0.8 to 10% depending on the combinations of the poor-good solvents. The differences in the IPCE values are discussed in terms of the surface area, thickness, and electron mobility of the deposited cluster films. The electron mobility is found to be the most predominant factor for the IPCE, indicating the importance of the electron-transporting process in the overall photocurrent generation. In addition, the electron mobility is closely correlated with the underlying molecular alignment and the resultant cluster structure. Thus, these results will provide basic clue for the design of C(70)-based molecular devices including the organic photovoltaics.


Asunto(s)
Carbono/química , Procesos Fotoquímicos , Solventes/química , Absorción , Acetonitrilos/química , Electroquímica , Transporte de Electrón , Electroforesis , Microondas , Espectrofotometría Ultravioleta , Propiedades de Superficie
7.
Chemistry ; 14(16): 4875-85, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18418839

RESUMEN

We have successfully developed a new methodology for the self-organization of C(60) molecules on the sidewall of carbon nanotubes for use in photoelectrochemical devices. Novel nanocarbon composites of fullerene (e.g., C(60)) and highly soluble, chemically functionalized single-walled carbon nanotubes (f-SWNT) have been prepared by the rapid injection of a poor solvent (e.g., acetonitrile) into a mixed solution of C(60) and f-SWNT in o-dichlorobenzene. Measurements by using scanning electron microscopy of cast samples revealed that the composites are categorized into three groups; i) f-SWNT bundles covered with layers of C(60) molecules, ii) round, large C(60) clusters (sizes of 500-1000 nm) containing f-SWNT, and iii) typical, round C(60) clusters (sizes of 150-250 nm). The electrophoretic deposition of the composites onto a nanostructured SnO(2) electrode yielded the hierarchical film with a gradient composition depending on the difference in the mobilities of C(60) and f-SWNT during the electrophoretic process. The composite film exhibited an incident photon-to-photocurrent efficiency as high as 18 % at lambda=400 nm under an applied potential of 0.05 V vs. SCE. The photocurrent generation efficiency is the highest value among carbon nanotube-based photoelectrochemical devices in which carbon nanotubes are deposited electrophoretically, electrostatically or covalently onto semiconducting electrodes. The highly aligned structure of C(60) molecules on f-SWNT can rationalize the efficient photocurrent generation. The results obtained here will provide valuable information on the design of carbon nanotube-based molecular devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...