Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Environ Mol Mutagen ; 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39248027

RESUMEN

The genotoxic and clastogenic/aneugeneic potentials of four α,ß-unsaturated aldehydes, 2-phenyl-2-butenal, nona-2-trans-6-cis-dienal, 2-methyl-2-pentenal, and p-methoxy cinnamaldehyde, which are used as fragrance materials, were assessed using the Chicken Egg Genotoxicity Assay (CEGA) and the Hen's egg micronucleus (HET-MN) assay, respectively. Selection of materials was based on their chemical structures and the results of their previous assessment in the regulatory in vitro and/or in vivo genotoxicity test battery. Three tested materials, 2-phenyl-2-butenal, nona-2-trans-6-cis-dienal, and 2-methyl-2-pentenal, were negative in both, CEGA and HET-MN assays. These findings were congruent with the results of regulatory in vivo genotoxicity assays. In contrast, p-methoxy cinnamaldehyde, which was also negative in the in vivo genotoxicity assays, produced evidence of DNA damage, including DNA strand breaks and DNA adducts in CEGA. However, no increase in the micronucleus formation in blood was reported in the HET-MN study. Such variation in responses between the CEGA and HET-MN assay can be attributed to differences in the dosing protocols. Pretreatment with a glutathione precursor, N-acetyl cysteine, negated positive outcomes produced by p-methoxy cinnamaldehyde in CEGA, indicating that difference in response observed in the chicken egg and rodent models can be attributed to rapid glutathione depletion. Overall, our findings support the conclusion that CEGA and/or HET-MN can be considered as a potential alternative to animal testing as follow-up strategies for assessment of genotoxic potential of fragrance materials with evidence of genotoxicity in vitro.

2.
Environ Mol Mutagen ; 64(4): 234-243, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36762970

RESUMEN

To determine the utility of the ToxTracker assay in animal alternative testing strategies, the genotoxic potential of four fragrance materials (2-octen-4-one, lauric aldehyde, veratraldehyde, and p-methoxy cinnamaldehyde) were tested in the ToxTracker assay. These materials have been previously evaluated in an in vitro as well as in vivo micronucleus assay, conducted as per OECD guidelines. In addition to these studies, reconstructed human skin micronucleus studies were conducted on all four materials. All four materials were positive in an in vitro micronucleus assay but were negative in both in vivo and 3D skin micronucleus assays. The ToxTracker assay, in combination with in silico methods to predict metabolism was used to identify mechanisms for the misleading positive outcomes observed in the in vitro micronucleus assays. The results show that the ToxTracker assay, in conjunction with in silico predictions, can provide the information needed to aid in the identification of an appropriate animal alternative follow-up assay, for substances with positive results in the standard in vitro test battery. Thus, the ToxTracker assay is a valuable tool to identify the genotoxic potential of fragrance materials and can aid with replacing animal-based follow-up testing with appropriate animal alternative assay(s).


Asunto(s)
Daño del ADN , Odorantes , Animales , Humanos , Pruebas de Micronúcleos/métodos , Piel , Pruebas de Mutagenicidad/métodos
3.
Mutagenesis ; 37(1): 13-23, 2022 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-35302169

RESUMEN

BlueScreen HC is a mammalian cell-based assay for measuring the genotoxicity and cytotoxicity of chemical compounds and mixtures. The BlueScreen HC assay has been utilized at the Research Institute for Fragrance Materials in a safety assessment program as a screening tool to prioritize fragrance materials for higher-tier testing, as supporting evidence when using a read-across approach, and as evidence to adjust the threshold of toxicological concern. Predictive values for the BlueScreen HC assay were evaluated based on the ability of the assay to predict the outcome of in vitro and in vivo mutagenicity and chromosomal damage genotoxicity assays. A set of 371 fragrance materials was assessed in the BlueScreen HC assay along with existing or newly generated in vitro and in vivo genotoxicity data. Based on a weight-of-evidence approach, the majority of materials in the data set were deemed negative and concluded not to have the potential to be genotoxic, while only a small proportion of materials were determined to show genotoxic effects in these assays. Analysis of the data set showed a combination of high positive agreement but low negative agreement between BlueScreen HC results, in vitro regulatory genotoxicity assays, and higher-tier test results. The BlueScreen HC assay did not generate any false negatives, thereby providing robustness when utilizing it as a high-throughput screening tool to evaluate the large inventory of fragrance materials. From the perspective of protecting public health, it is desirable to have no or minimal false negatives, as a false-negative result may incorrectly indicate the lack of a genotoxicity hazard. However, the assay did have a high percentage of false-positive results, resulting in poor positive predictivity of the in vitro genotoxicity test battery outcome. Overall, the assay generated 100% negative predictivity and 3.9% positive predictivity. In addition to the data set of 371 fragrance materials, 30 natural complex substances were evaluated for BlueScreen HC, Ames, and in vitro micronucleus assay, and a good correlation in all three assays was observed. Overall, while a positive result may have to be further investigated, these findings suggest that the BlueScreen HC assay can be a valuable screening tool to detect the genotoxic potential of fragrance materials and mixtures.


Asunto(s)
Daño del ADN , Odorantes , Animales , Bioensayo/métodos , Mamíferos , Pruebas de Mutagenicidad/métodos , Mutágenos/toxicidad
4.
Food Chem Toxicol ; 159: 112659, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34801651

RESUMEN

Mintlactone (chemical name 3,6-dimethyl-5,6,7,7a-tetrahydro-1-benzofuran-2(4H)-one, CAS Number 13341-72-5) is a fragrance and flavor ingredient with reported uses in many different cosmetics, personal care, and household products. In order to evaluate the genotoxic potential of mintlactone, in vitro and in vivo genotoxicity tests were conducted. Results from bacterial mutagenicity tests varied across different batches of differing purity with positive results observed in TA98 only. An in vivo comet assay was also considered to be positive in livers of female mice but negative in male mice. In contrast, in vitro and in vivo micronucleus tests, as well as 3D skin comet/micronucleus tests, were negative, indicating no chromosomal or DNA damage. The underlying causes for these contradictory results are not clear. It appears that the purity and/or stability of the test material may be an issue. In the absence of dependable scientific information on the purity and/or storage stability of mintlactone, its safety for use as a fragrance ingredient cannot be substantiated.


Asunto(s)
Daño del ADN/efectos de los fármacos , Lactonas/toxicidad , Mutágenos/toxicidad , Terpenos/toxicidad , Animales , Ensayo Cometa , Femenino , Aromatizantes , Masculino , Ratones , Pruebas de Micronúcleos , Pruebas de Mutagenicidad , Perfumes
5.
Mutagenesis ; 37(2): 89-111, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-34850913

RESUMEN

In order to evaluate the utility of the 3D reconstructed skin micronucleus assay (3DRSMN) to assess clastogenic/aneugenic potential of the fragrance chemicals, a set of 22 fragrance materials were evaluated in 3DRSMN assay. These materials evaluated were also evaluated in an in vitro as well as in vivo micronucleus assay, conducted as per Organisation for Economic Co-operation and Development guidelines. The results of the RSMN assay were in 100% agreement with the in vivo micronucleus assay results. From this dataset, 18 materials were positive in an in vitro micronucleus assay but were negative in an in vivo micronucleus assay. All these 18 materials were also concluded to be negative in 3DRSMN assay, stressing the importance of the assay to help minimize misleading positive outcomes from the in vitro assay. Since the highest exposure for fragrances is through the dermal route, the RSMN assay fits the applicability domain for testing. Thus, RSMN assay is an important alternative to animal testing for characterization of the genotoxicity potential of fragrance materials.


Asunto(s)
Odorantes , Piel , Animales , Daño del ADN , Pruebas de Micronúcleos/métodos , Mutágenos/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...