Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 210
Filtrar
1.
J Clin Endocrinol Metab ; 109(2): 549-556, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-37602721

RESUMEN

CONTEXT: Familial hypocalciuric hypercalcemia type 1 (FHH-1) defines an autosomal dominant disease, related to mutations in the CASR gene, with mild hypercalcemia in most cases. Cases of FHH-1 with a short QT interval have not been reported to date. OBJECTIVE: Three family members presented with FHH-1 and short QT interval (<360 ms), a condition that could lead to cardiac arrhythmias, and the effects of cinacalcet, an allosteric modulator of the CaSR, in rectifying the abnormal sensitivity of the mutant CaSR and in correcting the short QT interval were determined. METHODS: CASR mutational analysis was performed by next-generation sequencing and functional consequences of the identified CaSR variant (p.Ile555Thr), and effects of cinacalcet were assessed in HEK293 cells expressing wild-type and variant CaSRs. A cinacalcet test consisting of administration of 30 mg cinacalcet (8 Am) followed by hourly measurement of serum calcium, phosphate, and parathyroid hormone during 8 hours and an electrocardiogram was performed. RESULTS: The CaSR variant (p.Ile555Thr) was confirmed in all 3 FHH-1 patients and was shown to be associated with a loss of function that was ameliorated by cinacalcet. Cinacalcet decreased parathyroid hormone by >50% within two hours, and decreases in serum calcium and increases in serum phosphate occurred within 8 hours, with rectification of the QT interval, which remained normal after 3 months of cinacalcet treatment. CONCLUSION: Our results indicate that FHH-1 patients should be assessed for a short QT interval and a cinacalcet test used to select patients who are likely to benefit from this treatment.


Asunto(s)
Hipercalcemia , Hiperparatiroidismo , Humanos , Hipercalcemia/tratamiento farmacológico , Hipercalcemia/genética , Cinacalcet/uso terapéutico , Calcio , Células HEK293 , Mutación , Hormona Paratiroidea , Fosfatos , Receptores Sensibles al Calcio/genética
2.
Hormones (Athens) ; 23(1): 3-14, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38038882

RESUMEN

Primary hyperparathyroidism (PHPT), a relatively common disorder characterized by hypercalcemia with raised or inappropriately normal serum parathyroid hormone (PTH) concentrations, may occur as part of a hereditary syndromic disorder or as a non-syndromic disease. The associated syndromic disorders include multiple endocrine neoplasia types 1-5 (MEN1-5) and hyperparathyroidism with jaw tumor (HPT-JT) syndromes, and the non-syndromic forms include familial hypocalciuric hypercalcemia types 1-3 (FHH1-3), familial isolated hyperparathyroidism (FIHP), and neonatal severe hyperparathyroidism (NS-HPT). Such hereditary forms may occur in > 10% of patients with PHPT, and their recognition is important for implementation of gene-specific screening protocols and investigations for other associated tumors. Syndromic PHPT tends to be multifocal and multiglandular with most patients requiring parathyroidectomy with the aim of limiting end-organ damage associated with hypercalcemia, particularly osteoporosis, nephrolithiasis, and renal failure. Some patients with non-syndromic PHPT may have mutations of the MEN1 gene or the calcium-sensing receptor (CASR), whose loss of function mutations usually cause FHH1, a disorder associated with mild hypercalcemia and may follow a benign clinical course. Measurement of the urinary calcium-to-creatinine ratio clearance (UCCR) may help to distinguish patients with FHH from those with PHPT, as the majority of FHH patients have low urinary calcium excretion (UCCR < 0.01). Once genetic testing confirms a hereditary cause of PHPT, further genetic testing can be offered to the patients' relatives and subsequent screening can be carried out in these affected family members, which prevents inappropriate testing in normal individuals.


Asunto(s)
Adenoma , Fibroma , Hipercalcemia , Hiperparatiroidismo Primario , Hiperparatiroidismo , Neoplasias Maxilomandibulares , Recién Nacido , Humanos , Hiperparatiroidismo Primario/diagnóstico , Calcio
3.
J Invest Dermatol ; 144(4): 811-819.e4, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37802293

RESUMEN

Mosaic variants in genes GNAQ or GNA11 lead to a spectrum of vascular and pigmentary diseases including Sturge-Weber syndrome, in which progressive postnatal neurological deterioration led us to seek biologically targeted therapeutics. Using two cellular models, we find that disease-causing GNAQ/11 variants hyperactivate constitutive and G-protein coupled receptor ligand-induced intracellular calcium signaling in endothelial cells. We go on to show that the aberrant ligand-activated intracellular calcium signal is fueled by extracellular calcium influx through calcium-release-activated channels. Treatment with targeted small interfering RNAs designed to silence the variant allele preferentially corrects both the constitutive and ligand-activated calcium signaling, whereas treatment with a calcium-release-activated channel inhibitor rescues the ligand-activated signal. This work identifies hyperactivated calcium signaling as the primary biological abnormality in GNAQ/11 mosaicism and paves the way for clinical trials with genetic or small molecule therapies.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gq-G11 , Subunidades alfa de la Proteína de Unión al GTP , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Subunidades alfa de la Proteína de Unión al GTP/genética , Mutación , Calcio , Células Endoteliales/metabolismo , Mosaicismo , Señalización del Calcio/genética , Ligandos
4.
J Invest Dermatol ; 144(4): 820-832.e9, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37802294

RESUMEN

Mosaic mutations in genes GNAQ or GNA11 lead to a spectrum of diseases including Sturge-Weber syndrome and phakomatosis pigmentovascularis with dermal melanocytosis. The pathognomonic finding of localized "tramlining" on plain skull radiography, representing medium-sized neurovascular calcification and associated with postnatal neurological deterioration, led us to study calcium metabolism in a cohort of 42 children. In this study, we find that 74% of patients had at least one abnormal measurement of calcium metabolism, the commonest being moderately low serum ionized calcium (41%) or high parathyroid hormone (17%). Lower levels of ionized calcium even within the normal range were significantly associated with seizures, and with specific antiepileptics despite normal vitamin D levels. Successive measurements documented substantial intrapersonal fluctuation in indices over time, and DEXA scans were normal in patients with hypocalcemia. Neurohistology from epilepsy surgery in five patients revealed not only intravascular, but perivascular and intraparenchymal mineral deposition and intraparenchymal microvascular disease in addition to previously reported findings. Neuroradiology review clearly demonstrated progressive calcium deposition in individuals over time. These findings and those of the adjoining paper suggest that calcium deposition in the brain of patients with GNAQ/GNA11 mosaicism may not be a nonspecific sign of damage as was previously thought, but may instead reflect the central postnatal pathological process in this disease spectrum.


Asunto(s)
Calcinosis , Síndromes Neurocutáneos , Niño , Humanos , Subunidades alfa de la Proteína de Unión al GTP/genética , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Calcio/metabolismo , Mosaicismo , Síndromes Neurocutáneos/diagnóstico , Síndromes Neurocutáneos/genética , Calcinosis/genética
5.
J Am Soc Nephrol ; 34(12): 1991-2011, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37787550

RESUMEN

SIGNIFICANCE STATEMENT: Kidney stone disease is a common disorder with poorly understood pathophysiology. Observational and genetic studies indicate that adiposity is associated with an increased risk of kidney stone disease. However, the relative contribution of general and central adipose depots and the mechanisms by which effects of adiposity on kidney stone disease are mediated have not been defined. Using conventional and genetic epidemiological techniques, we demonstrate that general and central adiposity are independently associated with kidney stone disease. In addition, one mechanism by which central adiposity increases risk of kidney stone disease is by increasing serum calcium concentration. Therapies targeting adipose depots may affect calcium homeostasis and help to prevent kidney stone disease. BACKGROUND: Kidney stone disease affects approximately 10% of individuals in their lifetime and is frequently recurrent. The disease is linked to obesity, but the mechanisms mediating this association are uncertain. METHODS: Associations of adiposity and incident kidney stone disease were assessed in the UK Biobank over a mean of 11.6 years/person. Genome-wide association studies and Mendelian randomization (MR) analyses were undertaken in the UK Biobank, FinnGen, and in meta-analyzed cohorts to identify factors that affect kidney stone disease risk. RESULTS: Observational analyses on UK Biobank data demonstrated that increasing central and general adiposity is independently associated with incident kidney stone formation. Multivariable MR, using meta-analyzed UK Biobank and FinnGen data, established that risk of kidney stone disease increases by approximately 21% per one standard deviation increase in body mass index (BMI, a marker of general adiposity) independent of waist-to-hip ratio (WHR, a marker of central adiposity) and approximately 24% per one standard deviation increase of WHR independent of BMI. Genetic analyses indicate that higher WHR, but not higher BMI, increases risk of kidney stone disease by elevating adjusted serum calcium concentrations (ß=0.12 mmol/L); WHR mediates 12%-15% of its effect on kidney stone risk in this way. CONCLUSIONS: Our study indicates that visceral adipose depots elevate serum calcium concentrations, resulting in increased risk of kidney stone disease. These findings highlight the importance of weight loss in individuals with recurrent kidney stones and suggest that therapies targeting adipose depots may affect calcium homeostasis and contribute to prevention of kidney stone disease.


Asunto(s)
Adiposidad , Cálculos Renales , Humanos , Adiposidad/genética , Calcio , Factores de Riesgo , Estudio de Asociación del Genoma Completo , Obesidad/complicaciones , Obesidad Abdominal/complicaciones , Obesidad Abdominal/genética , Relación Cintura-Cadera , Índice de Masa Corporal , Cálculos Renales/epidemiología , Cálculos Renales/etiología , Análisis de la Aleatorización Mendeliana
6.
Endocr Oncol ; 3(1): e230003, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37434653

RESUMEN

Pancreatic neuroendocrine tumours (PNETs) are the second most common pancreatic tumour. However, relatively little is known about their tumourigenic drivers, other than mutations involving the multiple endocrine neoplasia 1 (MEN1), ATRX chromatin remodeler, and death domain-associated protein genes, which are found in ~40% of sporadic PNETs. PNETs have a low mutational burden, thereby suggesting that other factors likely contribute to their development, including epigenetic regulators. One such epigenetic process, DNA methylation, silences gene transcription via 5'methylcytosine (5mC), and this is usually facilitated by DNA methyltransferase enzymes at CpG-rich areas around gene promoters. However, 5'hydroxymethylcytosine, which is the first epigenetic mark during cytosine demethylation, and opposes the function of 5mC, is associated with gene transcription, although the significance of this remains unknown, as it is indistinguishable from 5mC when conventional bisulfite conversion techniques are solely used. Advances in array-based technologies have facilitated the investigation of PNET methylomes and enabled PNETs to be clustered by methylome signatures, which has assisted in prognosis and discovery of new aberrantly regulated genes contributing to tumourigenesis. This review will discuss the biology of DNA methylation, its role in PNET development, and impact on prognostication and discovery of epigenome-targeted therapies.

7.
JBMR Plus ; 7(6): e10739, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37283649

RESUMEN

The nuclear factor I/X (NFIX) gene encodes a ubiquitously expressed transcription factor whose mutations lead to two allelic disorders characterized by developmental, skeletal, and neural abnormalities, namely, Malan syndrome (MAL) and Marshall-Smith syndrome (MSS). NFIX mutations associated with MAL mainly cluster in exon 2 and are cleared by nonsense-mediated decay (NMD) leading to NFIX haploinsufficiency, whereas NFIX mutations associated with MSS are clustered in exons 6-10 and escape NMD and result in the production of dominant-negative mutant NFIX proteins. Thus, different NFIX mutations have distinct consequences on NFIX expression. To elucidate the in vivo effects of MSS-associated NFIX exon 7 mutations, we used CRISPR-Cas9 to generate mouse models with exon 7 deletions that comprised: a frameshift deletion of two nucleotides (Nfix Del2); in-frame deletion of 24 nucleotides (Nfix Del24); and deletion of 140 nucleotides (Nfix Del140). Nfix +/Del2, Nfix +/Del24, Nfix +/Del140, Nfix Del24/Del24, and Nfix Del140/Del140 mice were viable, normal, and fertile, with no skeletal abnormalities, but Nfix Del2/Del2 mice had significantly reduced viability (p < 0.002) and died at 2-3 weeks of age. Nfix Del2 was not cleared by NMD, and NfixDel2/Del2 mice, when compared to Nfix +/+ and Nfix +/Del2 mice, had: growth retardation; short stature with kyphosis; reduced skull length; marked porosity of the vertebrae with decreased vertebral and femoral bone mineral content; and reduced caudal vertebrae height and femur length. Plasma biochemistry analysis revealed Nfix Del2/Del2 mice to have increased total alkaline phosphatase activity but decreased C-terminal telopeptide and procollagen-type-1-N-terminal propeptide concentrations compared to Nfix +/+ and Nfix +/Del2 mice. Nfix Del2/Del2 mice were also found to have enlarged cerebral cortices and ventricular areas but smaller dentate gyrus compared to Nfix +/+ mice. Thus, Nfix Del2/Del2 mice provide a model for studying the in vivo effects of NFIX mutants that escape NMD and result in developmental abnormalities of the skeletal and neural tissues that are associated with MSS. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

8.
J Pediatr ; 257: 113367, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36868303

RESUMEN

OBJECTIVES: To evaluate the prevalence and degree of any neurodevelopmental abnormalities in children with familial hypocalciuric hypercalcemia type 3 (FHH3). STUDY DESIGN: A formal neurodevelopmental assessment was performed in children diagnosed with FHH3. The Vineland Adaptive Behavior Scales, which is a standardized parent report assessment tool for adaptive behavior, was used to assess communication, social skills, and motor function and to generate a composite score. RESULTS: Six patients were diagnosed with hypercalcemia between 0.1 and 8 years of age. All had neurodevelopmental abnormalities in childhood consisting of either global developmental delay, motor delay, expressive speech disturbances, learning difficulties, hyperactivity, or autism spectrum disorder. Four out of the 6 probands had a composite Vineland Adaptive Behavior Scales SDS of < -2.0, indicating adaptive malfunctioning. Significant deficits were observed in the domains of communication (mean SDS: -2.0, P < .01), social skills (mean SDS: -1.3, P < .05), and motor skills (mean SDS: 2.6, P < .05). Individuals were equally affected across domains, with no clear genotype-phenotype correlation. All family members affected with FHH3 also described evidence of neurodevelopmental dysfunction, including mild-to-moderate learning difficulties, dyslexia, and hyperactivity. CONCLUSION: Neurodevelopmental abnormalities appear to be a highly penetrant and common feature of FHH3, and early detection is warranted to provide appropriate educational support. This case series also supports consideration of serum calcium measurement as part of the diagnostic work-up in any child presenting with unexplained neurodevelopmental abnormalities.


Asunto(s)
Trastorno del Espectro Autista , Hipercalcemia , Enfermedades Renales , Humanos , Hipercalcemia/diagnóstico , Hipercalcemia/genética , Trastorno del Espectro Autista/complicaciones , Trastorno del Espectro Autista/diagnóstico , Comunicación , Estudios de Asociación Genética
9.
J Bone Miner Res ; 38(6): 907-917, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36970776

RESUMEN

Familial hypocalciuric hypercalcemia type 2 (FHH2) and autosomal dominant hypocalcemia type 2 (ADH2) are due to loss- and gain-of-function mutations, respectively, of the GNA11 gene that encodes the G protein subunit Gα11, a signaling partner of the calcium-sensing receptor (CaSR). To date, four probands with FHH2-associated Gα11 mutations and eight probands with ADH2-associated Gα11 mutations have been reported. In a 10-year period, we identified 37 different germline GNA11 variants in >1200 probands referred for investigation of genetic causes for hypercalcemia or hypocalcemia, comprising 14 synonymous, 12 noncoding, and 11 nonsynonymous variants. The synonymous and noncoding variants were predicted to be benign or likely benign by in silico analysis, with 5 and 3, respectively, occurring in both hypercalcemic and hypocalcemic individuals. Nine of the nonsynonymous variants (Thr54Met, Arg60His, Arg60Leu, Gly66Ser, Arg149His, Arg181Gln, Phe220Ser, Val340Met, Phe341Leu) identified in 13 probands have been reported to be FHH2- or ADH2-causing. Of the remaining nonsynonymous variants, Ala65Thr was predicted to be benign, and Met87Val, identified in a hypercalcemic individual, was predicted to be of uncertain significance. Three-dimensional homology modeling of the Val87 variant suggested it was likely benign, and expression of Val87 variant and wild-type Met87 Gα11 in CaSR-expressing HEK293 cells revealed no differences in intracellular calcium responses to alterations in extracellular calcium concentrations, consistent with Val87 being a benign polymorphism. Two noncoding region variants, a 40bp-5'UTR deletion and a 15bp-intronic deletion, identified only in hypercalcemic individuals, were associated with decreased luciferase expression in vitro but no alterations in GNA11 mRNA or Gα11 protein levels in cells from the patient and no abnormality in splicing of the GNA11 mRNA, respectively, confirming them to be benign polymorphisms. Thus, this study identified likely disease-causing GNA11 variants in <1% of probands with hypercalcemia or hypocalcemia and highlights the occurrence of GNA11 rare variants that are benign polymorphisms. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Asunto(s)
Hipercalcemia , Hipocalcemia , Humanos , Hipocalcemia/genética , Hipocalcemia/metabolismo , Hipercalcemia/genética , Calcio/metabolismo , Células HEK293 , Mutación/genética , Receptores Sensibles al Calcio/genética , Receptores Sensibles al Calcio/metabolismo , Subunidades alfa de la Proteína de Unión al GTP/genética , Subunidades alfa de la Proteína de Unión al GTP/metabolismo
10.
J Mol Endocrinol ; 70(3)2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36445946

RESUMEN

The prolactin receptor (PRLR) signals predominantly through the JAK2-STAT5 pathway regulating multiple physiological functions relating to fertility, lactation, and metabolism. However, the molecular pathology and role of PRLR mutations and signalling are incompletely defined, with progress hampered by a lack of reported disease-associated PRLR variants. To date, two common germline PRLR variants are reported to demonstrate constitutive activity, with one, Ile146Leu, overrepresented in benign breast disease, while a rare activating variant, Asn492Ile, is reported to be associated with an increased incidence of prolactinoma. In contrast, an inactivating germline heterozygous PRLR variant (His188Arg) was reported in a kindred with hyperprolactinaemia, while an inactivating compound heterozygous PRLR variant (Pro269Leu/Arg171Stop) was identified in an individual with hyperprolactinaemia and agalactia. We hypothesised that additional rare germline PRLR variants, identified from large-scale sequencing projects (ExAC and GnomAD), may be associated with altered in vitro PRLR signalling activity. We therefore evaluated >300 previously uncharacterised non-synonymous, germline PRLR variants and selected 10 variants for in vitro analysis based on protein prediction algorithms, proximity to known functional domains and structural modelling. Five variants, including extracellular and intracellular domain variants, were associated with altered responses when compared to the wild-type receptor. These altered responses included loss- and gain-of-function activities related to STAT5 signalling, Akt and FOXO1 activity, as well as cell viability and apoptosis. These studies provide further insight into PRLR structure-function and indicate that rare germline PRLR variants may have diverse modulating effects on PRLR signalling, although the pathophysiologic relevance of such alterations remains to be defined.


Asunto(s)
Hiperprolactinemia , Receptores de Prolactina , Femenino , Humanos , Receptores de Prolactina/genética , Receptores de Prolactina/metabolismo , Factor de Transcripción STAT5/genética , Factor de Transcripción STAT5/metabolismo , Transducción de Señal , Prolactina/metabolismo , Proteínas Portadoras/metabolismo
11.
Endocr Rev ; 44(2): 323-353, 2023 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-36327295

RESUMEN

Tumor-induced osteomalacia (TIO) is an ultrarare paraneoplastic syndrome due to overproduction of fibroblast growth factor 23 (FGF23), with profound effects on patient morbidity. TIO is an underdiagnosed disease, whose awareness should be increased among physicians for timely and proper management of patients. Symptoms reported by patients with TIO are usually nonspecific, thus rendering the diagnosis elusive, with an initial misdiagnosis rate of more than 95%. Biochemical features of TIO are represented by hypophosphatemia, increased or inappropriately normal levels of FGF23, and low to low normal circulating 1,25-dihydroxyvitamin D (1,25(OH)2D). Phosphaturic mesenchymal tumors are the pathological entities underlying TIO in most affected patients. There is now evidence that FN1-FGFR1 and FN1-FGF1 fusion genes are present in about half of tumors causing this paraneoplastic syndrome. Tumors causing TIO are small and grow slowly. They can occur in all parts of the body from head to toe with similar prevalence in soft tissue and bone. There are a number of functional and anatomical imaging techniques used for tumor localization; 68Ga DOTA-based technologies have better sensitivity. Surgery is the treatment of choice; several medical treatments are now available in case of inability to locate the tumor or in case of incomplete excision.


Asunto(s)
Hipofosfatemia , Osteomalacia , Síndromes Paraneoplásicos , Neoplasias de los Tejidos Blandos , Humanos , Neoplasias de los Tejidos Blandos/diagnóstico , Neoplasias de los Tejidos Blandos/patología , Neoplasias de los Tejidos Blandos/cirugía , Osteomalacia/etiología
12.
J Bone Miner Res ; 38(1): 1-2, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36461761
14.
Nat Rev Endocrinol ; 19(1): 46-61, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36192506

RESUMEN

Lactation is critical to infant short-term and long-term health and protects mothers from breast cancer, ovarian cancer and type 2 diabetes mellitus. The mammary gland is a dynamic organ, regulated by the coordinated actions of reproductive and metabolic hormones. These hormones promote gland development from puberty onwards and induce the formation of a branched, epithelial, milk-secreting organ by the end of pregnancy. Progesterone withdrawal following placental delivery initiates lactation, which is maintained by increased pituitary secretion of prolactin and oxytocin, and stimulated by infant suckling. After weaning, local cytokine production and decreased prolactin secretion trigger large-scale mammary cell loss, leading to gland involution. Here, we review advances in the molecular endocrinology of mammary gland development and milk synthesis. We discuss the hormonal functions of the mammary gland, including parathyroid hormone-related peptide secretion that stimulates maternal calcium mobilization for milk synthesis. We also consider the hormonal composition of human milk and its associated effects on infant health and development. Finally, we highlight endocrine and metabolic diseases that cause lactation insufficiency, for example, monogenic disorders of prolactin and prolactin receptor mutations, maternal obesity and diabetes mellitus, interventions during labour and delivery, and exposure to endocrine-disrupting chemicals such as polyfluoroalkyl substances in consumer products and other oestrogenic compounds.


Asunto(s)
Lactancia , Glándulas Mamarias Humanas , Femenino , Humanos , Embarazo , Glándulas Mamarias Humanas/metabolismo , Oxitocina/metabolismo , Placenta , Prolactina/metabolismo , Lactancia/metabolismo
15.
J Bone Miner Res ; 37(12): 2615-2629, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36375809

RESUMEN

This narrative report summarizes diagnostic criteria for hypoparathyroidism and describes the clinical presentation and underlying genetic causes of the nonsurgical forms. We conducted a comprehensive literature search from January 2000 to January 2021 and included landmark articles before 2000, presenting a comprehensive update of these topics and suggesting a research agenda to improve diagnosis and, eventually, the prognosis of the disease. Hypoparathyroidism, which is characterized by insufficient secretion of parathyroid hormone (PTH) leading to hypocalcemia, is diagnosed on biochemical grounds. Low albumin-adjusted calcium or ionized calcium with concurrent inappropriately low serum PTH concentration are the hallmarks of the disease. In this review, we discuss the characteristics and pitfalls in measuring calcium and PTH. We also undertook a systematic review addressing the utility of measuring calcium and PTH within 24 hours after total thyroidectomy to predict long-term hypoparathyroidism. A summary of the findings is presented here; results of the detailed systematic review are published separately in this issue of JBMR. Several genetic disorders can present with hypoparathyroidism, either as an isolated disease or as part of a syndrome. A positive family history and, in the case of complex diseases, characteristic comorbidities raise the clinical suspicion of a genetic disorder. In addition to these disorders' phenotypic characteristics, which include autoimmune diseases, we discuss approaches for the genetic diagnosis. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Asunto(s)
Hipoparatiroidismo , Humanos , Calcio/sangre , Hipocalcemia/sangre , Hipocalcemia/etiología , Hipoparatiroidismo/complicaciones , Hipoparatiroidismo/diagnóstico , Hipoparatiroidismo/genética , Hormona Paratiroidea/metabolismo
16.
J Bone Miner Res ; 37(11): 2293-2314, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36245251

RESUMEN

The last international guidelines on the evaluation and management of primary hyperparathyroidism (PHPT) were published in 2014. Research since that time has led to new insights into epidemiology, pathophysiology, diagnosis, measurements, genetics, outcomes, presentations, new imaging modalities, target and other organ systems, pregnancy, evaluation, and management. Advances in all these areas are demonstrated by the reference list in which the majority of listings were published after the last set of guidelines. It was thus, timely to convene an international group of over 50 experts to review these advances in our knowledge. Four Task Forces considered: 1. Epidemiology, Pathophysiology, and Genetics; 2. Classical and Nonclassical Features; 3. Surgical Aspects; and 4. Management. For Task Force 4 on the Management of PHPT, Grading of Recommendations, Assessment, Development, and Evaluations (GRADE) methodology addressed surgical management of asymptomatic PHPT and non-surgical medical management of PHPT. The findings of this systematic review that applied GRADE methods to randomized trials are published as part of this series. Task Force 4 also reviewed a much larger body of new knowledge from observations studies that did not specifically fit the criteria of GRADE methodology. The full reports of these 4 Task Forces immediately follow this summary statement. Distilling the essence of all deliberations of all Task Force reports and Methodological reviews, we offer, in this summary statement, evidence-based recommendations and guidelines for the evaluation and management of PHPT. Different from the conclusions of the last workshop, these deliberations have led to revisions of renal guidelines and more evidence for the other recommendations. The accompanying papers present an in-depth discussion of topics summarized in this report. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Asunto(s)
Hiperparatiroidismo Primario , Humanos , Hiperparatiroidismo Primario/diagnóstico , Hiperparatiroidismo Primario/terapia , Hiperparatiroidismo Primario/complicaciones
17.
J Bone Miner Res ; 37(11): 2315-2329, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36245271

RESUMEN

In this narrative review, we present data gathered over four decades (1980-2020) on the epidemiology, pathophysiology and genetics of primary hyperparathyroidism (PHPT). PHPT is typically a disease of postmenopausal women, but its prevalence and incidence vary globally and depend on a number of factors, the most important being the availability to measure serum calcium and parathyroid hormone levels for screening. In the Western world, the change in presentation to asymptomatic PHPT is likely to occur, over time also, in Eastern regions. The selection of the population to be screened will, of course, affect the epidemiological data (ie, general practice as opposed to tertiary center). Parathyroid hormone has a pivotal role in regulating calcium homeostasis; small changes in extracellular Ca++ concentrations are detected by parathyroid cells, which express calcium-sensing receptors (CaSRs). Clonally dysregulated overgrowth of one or more parathyroid glands together with reduced expression of CaSRs is the most important pathophysiologic basis of PHPT. The spectrum of skeletal disease reflects different degrees of dysregulated bone remodeling. Intestinal calcium hyperabsorption together with increased bone resorption lead to increased filtered load of calcium that, in addition to other metabolic factors, predispose to the appearance of calcium-containing kidney stones. A genetic basis of PHPT can be identified in about 10% of all cases. These may occur as a part of multiple endocrine neoplasia syndromes (MEN1-MEN4), or the hyperparathyroidism jaw-tumor syndrome, or it may be caused by nonsyndromic isolated endocrinopathy, such as familial isolated PHPT and neonatal severe hyperparathyroidism. DNA testing may have value in: confirming the clinical diagnosis in a proband; eg, by distinguishing PHPT from familial hypocalciuric hypercalcemia (FHH). Mutation-specific carrier testing can be performed on a proband's relatives and identify where the proband is a mutation carrier, ruling out phenocopies that may confound the diagnosis; and potentially prevention via prenatal/preimplantation diagnosis. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Asunto(s)
Hipercalcemia , Hiperparatiroidismo Primario , Recién Nacido , Femenino , Humanos , Hiperparatiroidismo Primario/complicaciones , Hiperparatiroidismo Primario/epidemiología , Hiperparatiroidismo Primario/genética , Calcio , Hipercalcemia/genética , Receptores Sensibles al Calcio/genética , Hormona Paratiroidea
18.
JBMR Plus ; 6(8): e10659, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35991532

RESUMEN

Atypical femur fractures (AFFs) are rare complications of anti-resorptive therapy. Devastating to the affected individual, they pose a public health concern because of reduced uptake of an effective treatment for osteoporosis due to patient concern. The risk of AFF is increased sixfold to sevenfold in patients of Asian ethnicity compared with Europeans. Genetic factors may underlie the AFF phenotype. Given the rarity of AFFs, studying familial AFF cases is valuable in providing insights into any genetic predisposition. We present two Singaporean families, one comprising a mother (1-a) and a daughter (1-b), and the other comprising two sisters (2-a and 2-b). All four cases presented with bisphosphonate-associated AFF. Whole-exome sequencing (WES) was performed on 1-b, 2-a, and 2-b. DNA for 1-a was not available. Variants were examined using a candidate gene approach comprising a list of genes previously associated with AFF in the literature, as well as using unbiased filtering based on dominant and/or recessive inheritance patterns. Using a candidate gene approach, rare variants shared between all three cases were not identified. A rare variant in TMEM25, shared by the two sisters (2-a and 2-b), was identified. A rare heterozygous PLOD2 variant was present in the daughter case with AFF (1-b), but not in the sisters. A list of potential genetic variants for AFF was identified after variant filtering and annotation analysis of the two sisters (2-a and 2-b), including a Gly35Arg variant in TRAF4, a gene required for normal skeletal development. Although the findings from this genetic analysis are inconclusive, a familial aggregation of AFFs is suggestive of a genetic component in AFF pathogenesis. We provide a comprehensive list of rare variants identified in these AFF familial cases to aid future genetic studies. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

19.
Endocr Relat Cancer ; 29(10): 557-568, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35900839

RESUMEN

Multiple endocrine neoplasia type 1 (MEN1), caused by mutations in the MEN1 gene encoding menin, is an autosomal dominant disorder characterised by the combined occurrence of parathyroid, pituitary and pancreatic neuroendocrine tumours (NETs). Development of these tumours is associated with wide variations in their severity, order and ages (from <5 to >80 years), requiring life-long screening. To improve tumour surveillance and quality of life, better circulating biomarkers, particularly for pancreatic NETs that are associated with higher mortality, are required. We, therefore, examined the expression of circulating miRNA in the serum of MEN1 patients. Initial profiling analysis followed by qRT-PCR validation studies identified miR-3156-5p to be significantly downregulated (-1.3 to 5.8-fold, P < 0.05-0.0005) in nine MEN1 patients, compared to matched unaffected relatives. MEN1 knock-down experiments in BON-1 human pancreatic NET cells resulted in reduced MEN1 (49%, P < 0.05), menin (54%, P < 0.05) and miR-3156-5p expression (20%, P < 0.005), compared to control-treated cells, suggesting that miR-3156-5p downregulation is a consequence of loss of MEN1 expression. In silico analysis identified mortality factor 4-like 2 (MOR4FL2) as a potential target of miR-3156-5p, and in vitro functional studies in BON-1 cells transfected with either miR-3156-5p mimic or inhibitors showed that the miR-3156-5p mimic significantly reduced MORF4L2 protein expression (46%, P < 0.005), while miR-3156-5p inhibitor significantly increased MORF4L2 expression (1.5-fold, P < 0.05), compared to control-treated cells, thereby confirming that miR-3156-5p regulates MORF4L2 expression. Thus, the inverse relationship between miR-3156-5p and MORF4L2 expression represents a potential serum biomarker that could facilitate the detection of NET occurrence in MEN1 patients.


Asunto(s)
MicroARNs , Neoplasia Endocrina Múltiple Tipo 1 , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Humanos , MicroARNs/genética , Persona de Mediana Edad , Neoplasia Endocrina Múltiple Tipo 1/patología , Mutación , Calidad de Vida , Factores de Transcripción/genética , Adulto Joven
20.
J Endocr Soc ; 6(7): bvac079, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35668994

RESUMEN

Bartter syndrome (BS) and Gitelman syndrome (GS) are renal tubular disorders affecting sodium, potassium, and chloride reabsorption. Clinical features include muscle cramps and weakness, in association with hypokalemia, hypochloremic metabolic alkalosis, and hyperreninemic hyperaldosteronism. Hypomagnesemia and hypocalciuria are typical of GS, while juxtaglomerular hyperplasia is characteristic of BS. GS is due to SLC12A3 variants, whereas BS is due to variants in SLC12A1, KCNJ1, CLCNKA, CLCNKB, BSND, MAGED2, or CASR. We had the opportunity to follow up one of the first reported cases of a salt-wasting tubulopathy, who based on clinical features was diagnosed with GS. The patient had presented at age 10 years with tetany precipitated by vomiting or diarrhea. She had hypokalemia, a hypochloremic metabolic alkalosis, hyponatremia, mild hypercalcemia, and normomagnesemia, and subsequently developed hypocalciuria and hypomagnesemia. A renal biopsy showed no evidence for juxtaglomerular hyperplasia. She developed chronic kidney failure at age 55 years, and ocular sclerochoroidal calcification, associated with BS and GS, at older than 65 years. Our aim was therefore to establish the genetic diagnosis in this patient using whole-genome sequencing (WGS). Leukocyte DNA was used for WGS analysis, and this revealed a homozygous c.226C > T (p.Arg76Ter) nonsense CLCNKB mutation, thereby establishing a diagnosis of BS type-3. WGS also identified 2 greater than 5-Mb regions of homozygosity that suggested likely mutational heterozygosity in her parents, who originated from a Greek island with fewer than 1500 inhabitants and may therefore have shared a common ancestor. Our results demonstrate the utility of WGS in establishing the correct diagnosis in renal tubular disorders with overlapping phenotypes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA