Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Physiol ; 598(13): 2651-2667, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32338378

RESUMEN

KEY POINTS: Receptor-operated activation of TRPC4 cation channels requires Gi/o proteins and phospholipase-Cδ1 (PLCδ1) activation by intracellular Ca2+ . Concurrent stimulation of the Gq/11 pathway accelerates Gi/o activation of TRPC4, which is not mimicked by increasing cytosolic Ca2+ . The kinetic effect of Gq/11 was diminished by alkaline intracellular pH (pHi ) and increased pHi buffer capacity. Acidic pHi (6.75-6.25) together with the cytosolic Ca2+ rise accelerated Gi/o -mediated TRPC4 activation. Protons exert their facilitation effect through Ca2+ -dependent activation of PLCδ1. The data suggest that the Gq/11 -PLCß pathway facilitates Gi/o activation of TRPC4 through hydrolysing phosphatidylinositol 4,5-bisphosphate (PIP2 ) to produce the initial proton signal that triggers a self-propagating PLCδ1 activity supported by regenerative H+ and Ca2+ . The findings provide novel mechanistic insights into receptor-operated TRPC4 activation by coincident Gq/11 and Gi/o pathways and shed light on how aberrant activation of TRPC4 may occur under pathological conditions to cause cell damage. ABSTRACT: Transient Receptor Potential Canonical 4 (TRPC4) forms non-selective cation channels activated downstream from receptors that signal through G proteins. Our recent work suggests that TRPC4 channels are particularly coupled to pertussis toxin-sensitive Gi/o proteins, with a co-dependence on phospholipase-Cδ1 (PLCδ1). The Gi/o -mediated TRPC4 activation is dually dependent on and bimodally regulated by phosphatidylinositol 4,5-bisphosphate (PIP2 ), the substrate hydrolysed by PLC, and intracellular Ca2+ . As a byproduct of PLC-mediated PIP2 hydrolysis, protons have been shown to play an important role in the activation of Drosophila TRP channels. However, how intracellular pH affects mammalian TRPC channels remains obscure. Here, using patch-clamp recordings of HEK293 cells heterologously co-expressing mouse TRPC4ß and the Gi/o -coupled µ opioid receptor, we investigated the role of intracellular protons on Gi/o -mediated TRPC4 activation. We found that acidic cytosolic pH greatly accelerated the rate of TRPC4 activation without altering the maximal current density and this effect was dependent on intracellular Ca2+ elevation. However, protons did not accelerate channel activation by directly acting upon TRPC4. We additionally demonstrated that protons exert their effect through sensitization of PLCδ1 to Ca2+ , which in turn promotes PLCδ1 activity and further potentiates TRPC4 via a positive feedback mechanism. The mechanism elucidated here helps explain how Gi/o and Gq/11 co-stimulation induces a faster activation of TRPC4 than Gi/o activation alone and highlights again the critical role of PLCδ1 in TRPC4 gating.


Asunto(s)
Calcio , Canales Catiónicos TRPC , Animales , Calcio/metabolismo , Células HEK293 , Humanos , Concentración de Iones de Hidrógeno , Ratones , Fosfolipasa C delta , Fosfolipasa D
2.
Curr Biol ; 30(8): 1367-1379.e6, 2020 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-32243853

RESUMEN

Rhodopsin is a light receptor comprised of an opsin protein and a light-sensitive retinal chromophore. Despite more than a century of scrutiny, there is no evidence that opsins function in chemosensation. Here, we demonstrate that three Drosophila opsins, Rh1, Rh4, and Rh7, are needed in gustatory receptor neurons to sense a plant-derived bitter compound, aristolochic acid (ARI). The gustatory requirements for these opsins are light-independent and do not require retinal. The opsins enabled flies to detect lower concentrations of aristolochic acid by initiating an amplification cascade that includes a G-protein, phospholipase Cß, and the TRP channel, TRPA1. In contrast, responses to higher levels of the bitter compound were mediated through direct activation of TRPA1. Our study reveals roles for opsins in chemosensation and raise questions concerning the original roles for these classical G-protein-coupled receptors.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/fisiología , Opsinas/genética , Percepción del Gusto/fisiología , Gusto/fisiología , Animales , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Femenino , Masculino , Opsinas/metabolismo , Distribución Aleatoria
3.
Biochem J ; 473(10): 1379-90, 2016 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-26987813

RESUMEN

Transient receptor potential canonical 4 (TRPC4) forms non-selective cation channels implicated in the regulation of diverse physiological functions. Previously, TRPC4 was shown to be activated by the Gi/o subgroup of heterotrimeric G-proteins involving Gαi/o, rather than Gßγ, subunits. Because the lifetime and availability of Gα-GTP are regulated by regulators of G-protein signalling (RGS) and Gαi/o-Loco (GoLoco) domain-containing proteins via their GTPase-activating protein (GAP) and guanine-nucleotide-dissociation inhibitor (GDI) functions respectively, we tested how RGS and GoLoco domain proteins affect TRPC4 currents activated via Gi/o-coupled receptors. Using whole-cell patch-clamp recordings, we show that both RGS and GoLoco proteins [RGS4, RGS6, RGS12, RGS14, LGN or activator of G-protein signalling 3 (AGS3)] suppress receptor-mediated TRPC4 activation without causing detectable basal current or altering surface expression of the channel protein. The inhibitory effects are dependent on the GAP and GoLoco domains and facilitated by enhancing membrane targeting of the GoLoco protein AGS3. In addition, RGS, but not GoLoco, proteins accelerate desensitization of receptor-activation evoked TRPC4 currents. The inhibitory effects of RGS and GoLoco domains are additive and are most prominent with RGS12 and RGS14, which contain both RGS and GoLoco domains. Our data support the notion that the Gα, but not Gßγ, arm of the Gi/o signalling is involved in TRPC4 activation and unveil new roles for RGS and GoLoco domain proteins in fine-tuning TRPC4 activities. The versatile and diverse functions of RGS and GoLoco proteins in regulating G-protein signalling may underlie the complexity of receptor-operated TRPC4 activation in various cell types under different conditions.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Proteínas de Unión al GTP/metabolismo , Canales Catiónicos TRPC/metabolismo , Western Blotting , Electrofisiología , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Proteínas de Unión al GTP/genética , Inhibidores de Disociación de Guanina Nucleótido/genética , Inhibidores de Disociación de Guanina Nucleótido/metabolismo , Células HEK293 , Proteínas de Unión al GTP Heterotriméricas/genética , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Mutación Puntual , Unión Proteica , Proteínas RGS/genética , Proteínas RGS/metabolismo , Transducción de Señal , Canales Catiónicos TRPC/genética
4.
Proc Natl Acad Sci U S A ; 113(4): 1092-7, 2016 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-26755577

RESUMEN

Transient Receptor Potential Canonical (TRPC) proteins form nonselective cation channels commonly known to be activated downstream from receptors that signal through phospholipase C (PLC). Although TRPC3/C6/C7 can be directly activated by diacylglycerols produced by PLC breakdown of phosphatidylinositol 4,5-bisphosphate (PIP2), the mechanism by which the PLC pathway activates TRPC4/C5 remains unclear. We show here that TRPC4 activation requires coincident stimulation of Gi/o subgroup of G proteins and PLCδ, with a preference for PLCδ1 over PLCδ3, but not necessarily the PLCß pathway commonly thought to be involved in receptor-operated TRPC activation. In HEK293 cells coexpressing TRPC4 and Gi/o-coupled µ opioid receptor, µ agonist elicited currents biphasically, with an initial slow phase preceding a rapidly developing phase. The currents were dependent on intracellular Ca(2+) and PIP2. Reducing PIP2 through phosphatases abolished the biphasic kinetics and increased the probability of channel activation by weak Gi/o stimulation. In both HEK293 cells heterologously expressing TRPC4 and renal carcinoma-derived A-498 cells endogenously expressing TRPC4, channel activation was inhibited by knocking down PLCδ1 levels and almost completely eliminated by a dominant-negative PLCδ1 mutant and a constitutively active RhoA mutant. Conversely, the slow phase of Gi/o-mediated TRPC4 activation was diminished by inhibiting RhoA or enhancing PLCδ function. Our data reveal an integrative mechanism of TRPC4 on detection of coincident Gi/o, Ca(2+), and PLC signaling, which is further modulated by the small GTPase RhoA. This mechanism is not shared with the closely related TRPC5, implicating unique roles of TRPC4 in signal integration in brain and other systems.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gi-Go/fisiología , Fosfolipasa C delta/fisiología , Canales Catiónicos TRPC/fisiología , Calcio/metabolismo , Carbacol/farmacología , Encefalina Ala(2)-MeFe(4)-Gli(5)/farmacología , Células HEK293 , Humanos , Transducción de Señal , Proteína de Unión al GTP rhoA/fisiología
5.
Br J Pharmacol ; 172(14): 3495-509, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25816897

RESUMEN

BACKGROUND AND PURPOSE: Transient receptor potential canonical (TRPC) channels play important roles in a broad array of physiological functions and are involved in various diseases. However, due to a lack of potent subtype-specific inhibitors the exact roles of TRPC channels in physiological and pathophysiological conditions have not been elucidated. EXPERIMENTAL APPROACH: Using fluorescence membrane potential and Ca(2+) assays and electrophysiological recordings, we characterized new 2-aminobenzimidazole-based small molecule inhibitors of TRPC4 and TRPC5 channels identified from cell-based fluorescence high-throughput screening. KEY RESULTS: The original compound, M084, was a potent inhibitor of both TRPC4 and TRPC5, but was also a weak inhibitor of TRPC3. Structural modifications of the lead compound resulted in the identification of analogues with improved potency and selectivity for TRPC4 and TRPC5 channels. The aminobenzimidazole derivatives rapidly inhibited the TRPC4- and TRPC5-mediated currents when applied from the extracellular side and this inhibition was independent of the mode of activation of these channels. The compounds effectively blocked the plateau potential mediated by TRPC4-containing channels in mouse lateral septal neurons, but did not affect the activity of heterologously expressed TRPA1, TRPM8, TRPV1 or TRPV3 channels or that of the native voltage-gated Na(+) , K(+) and Ca(2) (+) channels in dissociated neurons. CONCLUSIONS AND IMPLICATIONS: The TRPC4/C5-selective inhibitors developed here represent novel and useful pharmaceutical tools for investigation of physiological and pathophysiological functions of TRPC4/C5 channels.


Asunto(s)
Bencimidazoles/farmacología , Canales Catiónicos TRPC/antagonistas & inhibidores , Bencimidazoles/síntesis química , Bencimidazoles/química , Células Cultivadas , Relación Dosis-Respuesta a Droga , Células HEK293 , Humanos , Datos de Secuencia Molecular , Estructura Molecular , Relación Estructura-Actividad , Canales Catiónicos TRPC/metabolismo
6.
Pflugers Arch ; 466(7): 1301-16, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24121765

RESUMEN

In the central nervous system, canonical transient receptor potential (TRPC) channels have been implicated in mediating neuronal excitation induced by stimulating metabotropic receptors, including group 1 metabotropic glutamate receptors (mGluRs). Lateral septal (LS) neurons express high levels of TRPC4 and group I mGluRs. However, to what extent native TRPC4-containing channels (TRPC4-cc) are activated as well as the impact of different levels of TRPC4-cc activation on neuronal excitability remain elusive. Here, we report that stimulating LS neurons with group I mGluR agonist, (S)-3,5-DHPG, causes either an immediate increase in firing rate or an initial burst followed by a pause of firing, which can be correlated with below-threshold-depolarization (BTD) or above-threshold-plateau-depolarization (ATPD), respectively, in whole-cell recordings. The early phase of BTD and the entire ATPD are completely absent in neurons from TRPC4−/− mice. Moreover, in the same LS neurons, BTD can be converted to ATPD at more depolarized potentials or with a brief current injection, suggesting that BTD and ATPD may represent partial and full activations of TRPC4-cc, respectively. We show that coincident mGluR stimulation and depolarization is required to evoke strong TRPC4-cc current, and Na+ and Ca2+ influx, together with dynamic changes of intracellular Ca(2+), are essential for ATPD induction. Our results suggest that TRPC4-cc integrates metabotropic receptor stimulation with intracellular Ca(2+) signals to generate two interconvertible depolarization responses to affect excitability of LS neurons in distinct fashions.


Asunto(s)
Potenciales de Acción , Neuronas/metabolismo , Núcleos Septales/metabolismo , Canales Catiónicos TRPC/metabolismo , Animales , Calcio/metabolismo , Señalización del Calcio , Agonistas de Aminoácidos Excitadores/farmacología , Glicina/análogos & derivados , Glicina/farmacología , Ratones , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Neuronas/fisiología , Receptor del Glutamato Metabotropico 5/metabolismo , Resorcinoles/farmacología , Núcleos Septales/citología , Sodio/metabolismo , Canales Catiónicos TRPC/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA