Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Acc Chem Res ; 57(3): 338-348, 2024 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-38226431

RESUMEN

Acetylation plays a critical role in regulating eukaryotic transcription via the modification of histones. Beyond this well-documented function, a less explored biological frontier is the potential for acetylation to modify and regulate the function of RNA molecules themselves. N4-Acetylcytdine (ac4C) is a minor RNA nucleobase conserved across all three domains of life (archaea, bacteria, and eukarya), a conservation that suggests a fundamental role in biological processes. Unlike many RNA modifications that are controlled by large enzyme families, almost all organisms catalyze ac4C using a homologue of human Nat10, an essential disease-associated acetyltransferase enzyme.A critical step in defining the fundamental functions of RNA modifications has been the development of methods for their sensitive and specific detection. This Account describes recent progress enabling the use of chemical sequencing reactions to map and quantify ac4C with single-nucleotide resolution in RNA. To orient readers, we first provide historical background of the discovery of ac4C and the enzymes that catalyze its formation. Next, we describe mechanistic experiments that led to the development of first- and second-generation sequencing reactions able to determine ac4C's position in a polynucleotide by exploiting the nucleobase's selective susceptibility to reduction by hydride donors. A notable feature of this chemistry, which may serve as a prototype for nucleotide resolution RNA modification sequencing reactions more broadly, is its ability to drive a penetrant and detectable gain of signal specifically at ac4C sites. Emphasizing practical applications, we present how this optimized chemistry can be integrated into experimental workflows capable of sensitive, transcriptome-wide analysis. Such readouts can be applied to quantitatively define the ac4C landscape across the tree of life. For example, in human cell lines and yeast, this method has uncovered that ac4C is highly selective, predominantly occupying dominant sites within rRNA (rRNA) and tRNA (tRNA). By contrast, when we extend these analyses to thermophilic archaea they identify the potential for much more prevalent patterns of cytidine acetylation, leading to the discovery of a role for this modification in adaptation to environmental stress. Nucleotide resolution analyses of ac4C have also allowed for the determination of structure-activity relationships required for short nucleolar RNA (snoRNA)-catalyzed ac4C deposition and the discovery of organisms with unexpectedly divergent tRNA and rRNA acetylation signatures. Finally, we share how these studies have shaped our approach to evaluating novel ac4C sites reported in the literature and highlight unanswered questions and new directions that set the stage for future research in the field.


Asunto(s)
Citidina , ARN , Humanos , Citidina/análisis , Citidina/genética , Citidina/metabolismo , Acetilación , ARN/química , ARN de Transferencia/metabolismo , Saccharomyces cerevisiae/metabolismo , Archaea , Nucleótidos
2.
ACS Chem Biol ; 17(10): 2789-2800, 2022 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-36190452

RESUMEN

Hereditary leiomyomatosis and renal cell carcinoma (HLRCC) is a cancer predisposition syndrome driven by mutation of the tumor suppressor fumarate hydratase (FH). Inactivation of FH causes accumulation of the electrophilic oncometabolite fumarate. In the absence of methods for reactivation, tumor suppressors can be targeted via identification of synthetic lethal interactions using genetic screens. Inspired by recent advances in chemoproteomic target identification, here, we test the hypothesis that the electrophilicity of the HLRCC metabolome may produce unique susceptibilities to covalent small molecules, a phenomenon we term conditional covalent lethality. Screening a panel of chemically diverse electrophiles, we identified a covalent ligand, MP-1, that exhibits FH-dependent cytotoxicity. Synthesis and structure-activity profiling identified key molecular determinants underlying the molecule's effects. Chemoproteomic profiling of cysteine reactivity together with clickable probes validated the ability of MP-1 to engage an array of functional cysteines, including one lying in the Zn-finger domain of the tRNA methyltransferase enzyme TRMT1. TRMT1 overexpression rescues tRNA methylation from inhibition by MP-1 and partially attenuates the covalent ligand's cytotoxicity. Our studies highlight the potential for covalent metabolites and small molecules to synergistically produce novel synthetic lethal interactions and raise the possibility of applying phenotypic screening with chemoproteomic target identification to identify new functional oncometabolite targets.


Asunto(s)
Fumarato Hidratasa , Síndromes Neoplásicos Hereditarios , Humanos , Cisteína , Ligandos , Síndromes Neoplásicos Hereditarios/diagnóstico , Síndromes Neoplásicos Hereditarios/genética , Síndromes Neoplásicos Hereditarios/metabolismo , Fumaratos , ARNt Metiltransferasas , ARN de Transferencia
3.
RNA ; 28(12): 1582-1596, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36127124

RESUMEN

N4-acetylcytidine (ac4C) is an RNA nucleobase found in all domains of life. The establishment of ac4C in helix 45 (h45) of human 18S ribosomal RNA (rRNA) requires the combined activity of the acetyltransferase NAT10 and the box C/D snoRNA SNORD13. However, the molecular mechanisms governing RNA-guided nucleobase acetylation in humans remain unexplored. After applying comparative sequence analysis and site-directed mutagenesis to provide evidence that SNORD13 folds into three main RNA helices, we report two assays that enable the study of SNORD13-dependent RNA acetylation in human cells. First, we demonstrate that ectopic expression of SNORD13 rescues h45 in a SNORD13 knockout cell line. Next, we show that mutant snoRNAs can be used in combination with nucleotide resolution ac4C sequencing to define structure and sequence elements critical for SNORD13 function. Finally, we develop a second method that reports on the substrate specificity of endogenous NAT10-SNORD13 via mutational analysis of an ectopically expressed pre-rRNA substrate. By combining mutational analysis of these reconstituted systems with nucleotide resolution ac4C sequencing, our studies reveal plasticity in the molecular determinants underlying RNA-guided cytidine acetylation that is distinct from deposition of other well-studied rRNA modifications (e.g., pseudouridine). Overall, our studies provide a new approach to reconstitute RNA-guided cytidine acetylation in human cells as well as nucleotide resolution insights into the mechanisms governing this process.


Asunto(s)
Citidina , ARN Guía de Kinetoplastida , Humanos , Acetilación , ARN Guía de Kinetoplastida/metabolismo , Citidina/genética , Citidina/metabolismo , ARN Ribosómico 18S/genética , ARN Ribosómico/metabolismo , ARN Nucleolar Pequeño/genética , ARN Nucleolar Pequeño/metabolismo , Nucleótidos/metabolismo
4.
Nucleic Acids Res ; 50(11): 6284-6299, 2022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35648437

RESUMEN

NAT10 is an essential enzyme that catalyzes N4-acetylcytidine (ac4C) in eukaryotic transfer RNA and 18S ribosomal RNA. Recent studies suggested that rRNA acetylation is dependent on SNORD13, a box C/D small nucleolar RNA predicted to base-pair with 18S rRNA via two antisense elements. However, the selectivity of SNORD13-dependent cytidine acetylation and its relationship to NAT10's essential function remain to be defined. Here, we demonstrate that SNORD13 is required for acetylation of a single cytidine of human and zebrafish 18S rRNA. In-depth characterization revealed that SNORD13-dependent ac4C is dispensable for human cell growth, ribosome biogenesis, translation and development. This loss of function analysis inspired a cross-evolutionary survey of the eukaryotic rRNA acetylation 'machinery' that led to the characterization of many novel metazoan SNORD13 genes. This includes an atypical SNORD13-like RNA in Drosophila melanogaster which guides ac4C to 18S rRNA helix 45 despite lacking one of the two rRNA antisense elements. Finally, we discover that Caenorhabditis elegans 18S rRNA is not acetylated despite the presence of an essential NAT10 homolog. Our findings shed light on the molecular mechanisms underlying SNORD13-mediated rRNA acetylation across eukaryotic evolution and raise new questions regarding the biological and evolutionary relevance of this highly conserved rRNA modification.


Asunto(s)
Eucariontes , ARN Ribosómico 18S , ARN Nucleolar Pequeño , Acetilación , Animales , Eucariontes/genética , Eucariontes/metabolismo , Humanos , ARN Ribosómico , ARN Ribosómico 18S/metabolismo , ARN Nucleolar Pequeño/genética , ARN Nucleolar Pequeño/metabolismo , Subunidades Ribosómicas Pequeñas/metabolismo
5.
Biochemistry ; 61(7): 535-544, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35285626

RESUMEN

Chemical modification of cytidine in noncoding RNAs plays a key role in regulating translation and disease. However, the distribution and dynamics of many of these modifications remain unknown due to a lack of sensitive site-specific sequencing technologies. Here, we report a protonation-dependent sequencing reaction for the detection of 5-formylcytidine (5fC) and 5-carboxycytidine (5caC) in RNA. First, we evaluate how protonation combined with electron-withdrawing substituents alters the molecular orbital energies and reduction of modified cytidine nucleosides, highlighting 5fC and 5caC as reactive species. Next, we apply this reaction to detect these modifications in synthetic oligonucleotides as well as endogenous human transfer RNA (tRNA). Finally, we demonstrate the utility of our method to characterize a patient-derived model of 5fC deficiency, where it enables facile monitoring of both pathogenic loss and exogenous rescue of NSUN3-dependent 5fC within the wobble base of human mitochondrial tRNAMet. These studies showcase the ability of protonation to enhance the reactivity and sensitive detection of 5fC in RNA and more broadly provide a molecular foundation for using optimized sequencing reactions to better understand the role of oxidized RNA cytidine residues in diseases.


Asunto(s)
Citidina , ARN , Citidina/análogos & derivados , Citidina/química , Humanos , Oligonucleótidos , ARN/química , ARN de Transferencia
6.
Nat Chem Biol ; 17(11): 1121-1122, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34675421
7.
Chem Soc Rev ; 50(17): 9482-9502, 2021 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-34259263

RESUMEN

Methods to accurately determine the location and abundance of RNA modifications are critical to understanding their functional role. In this review, we describe recent efforts in which chemical reactivity and next-generation sequencing have been integrated to detect modified nucleotides in RNA. For eleven exemplary modifications, we detail chemical, enzymatic, and metabolic labeling protocols that can be used to differentiate them from canonical nucleobases. By emphasizing the molecular rationale underlying these detection methods, our survey highlights new opportunities for chemistry to define the role of RNA modifications in disease.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , ARN , Secuencia de Bases , Nucleótidos
8.
Nat Protoc ; 16(4): 2286-2307, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33772246

RESUMEN

A prerequisite to defining the transcriptome-wide functions of RNA modifications is the ability to accurately determine their location. Here, we present N4-acetylcytidine (ac4C) sequencing (ac4C-seq), a protocol for the quantitative single-nucleotide resolution mapping of cytidine acetylation in RNA. This method exploits the kinetically facile chemical reaction of ac4C with sodium cyanoborohydride under acidic conditions to form a reduced nucleobase. RNA is then fragmented, ligated to an adapter at its 3' end and reverse transcribed to introduce a non-cognate nucleotide at reduced ac4C sites. After adapter ligation, library preparation and high-throughput sequencing, a bioinformatic pipeline enables identification of ac4C positions on the basis of the presence of C→T misincorporations in reduced samples but not in controls. Unlike antibody-based approaches, ac4C-seq identifies specific ac4C residues and reports on their level of modification. The ac4C-seq library preparation protocol can be completed in ~4 d for transcriptome-wide sequencing.


Asunto(s)
Citidina/metabolismo , Nucleótidos/metabolismo , ARN/metabolismo , Análisis de Secuencia de ARN/métodos , Acetilación , Bacterias/metabolismo , Línea Celular , Humanos , Levaduras/metabolismo
9.
Curr Protoc Chem Biol ; 12(4): e89, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33275333

RESUMEN

Cytidine acetyltransferases are an emerging class of nucleic-acid-modifying enzymes responsible for the establishment of N4 -acetylcytidine (ac4C) in RNA. In contrast to histone acetyltransferases, whose activity is commonly studied by western blotting, relatively few methods exist for quickly assessing the activity of cytidine acetyltransferases from a biological sample of interest or the distribution of ac4C across different RNA species. In this protocol, we describe a method for analysis of cellular cytidine acetyltransferase activity using dot- and immuno-northern-blotting-based detection. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Detection of N4 -Acetylcytidine in RNA by dot blotting Basic Protocol 2: Visualizing N4 -Acetylcytidine Distribution in RNA by northern blotting.


Asunto(s)
Acetiltransferasas/análisis , Northern Blotting , Citidina/análisis , ARN/química , Acetiltransferasas/metabolismo , Citidina/metabolismo , Humanos , ARN/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...