RESUMEN
Melanommataceous species exhibit high diversity with a cosmopolitan distribution worldwide and show a prominent saprobic lifestyle. In this study, we explored five saprobic species collected from plant litter substrates from terrestrial habitats in China and Thailand. A combination of morphological characteristics and multi-locus phylogenetic analyses was used to determine their taxonomic classifications. Maximum Likelihood and Bayesian Inference analyses of combined LSU, SSU, ITS and tef1-α sequence data were used to clarify the phylogenetic affinities of the species. Byssosphaeriapoaceicola and Herpotrichiazingiberacearum are introduced as new species, while three new host records, Bertiellafici, By.siamensis and Melanommapopulicola are also reported from litter of Cinnamomumverum, Citrustrifoliata and Fagussylvatica, respectively. Yet, despite the rising interest in the melanommataceous species, there is a considerable gap in knowledge on their host associations and geographical distributions. Consequently, we compiled the host-species associations and geographical distributions of all the so far known melanommataceous species.
RESUMEN
Human fungal diseases are infections caused by any fungus that invades human tissues, causing superficial, subcutaneous, or systemic diseases. Fungal infections that enter various human tissues and organs pose a significant threat to millions of individuals with weakened immune systems globally. Over recent decades, the reported cases of invasive fungal infections have increased substantially and research progress in this field has also been rapidly boosted. This review provides a comprehensive list of human fungal pathogens extracted from over 850 recent case reports, and a summary of the relevant disease conditions and their origins. Details of 281 human fungal pathogens belonging to 12 classes and 104 genera in the divisions ascomycota, basidiomycota, entomophthoromycota, and mucoromycota are listed. Among these, Aspergillus stands out as the genus with the greatest potential of infecting humans, comprising 16 species known to infect humans. Additionally, three other genera, Curvularia, Exophiala, and Trichophyton, are recognized as significant genera, each comprising 10 or more known human pathogenic species. A phylogenetic analysis based on partial sequences of the 28S nrRNA gene (LSU) of human fungal pathogens was performed to show their phylogenetic relationships and clarify their taxonomies. In addition, this review summarizes the recent advancements in fungal disease diagnosis and therapeutics.
RESUMEN
Fungal taxonomy has a long history and changed significantly in the last few decades. Most recent studies have witnessed morphology combined with DNA-based molecular analyses as the main research tool for fungal species identification. During field surveys, some interesting Didymosphaeriaceae species were found from plant litter in China and Thailand. Morphology combined with phylogenetic analyses (Bayesian and maximum likelihood) of ITS, LSU, SSU, tef1-α, and tub2 loci was used to identify fungal taxa. In this article, three new species and six new host records are described. The new species, Montagnula acaciae, Paraconiothyrium zingiberacearum, and Paraphaeosphaeria brachiariae, can be distinguished from other species of the respective genera based on their distinct size differences (ascomata, asci, and ascospores) and DNA sequence data. The new host records, Montagnula jonesii, Paraconiothyrium fuckelii, Spegazzinia deightonii, and S. tessarthra are reported from Ficus benjamina, Dimocarpus longan, Hedychium coronarium, and Acacia auriculiformis respectively, for the first time. Also, Paraconiothyrium archidendri and P. brasiliense are reported for the first time from Magnolia sp. in China. Moreover, Paraconiothyrium rosae is synonymized under P. fuckelii based on close phylogeny affinities and morphological characteristics. In-depth morphological descriptions, micrographs, and phylogenetic trees are provided to show the placement of new taxa.
RESUMEN
This paper highlights the taxonomy of some interesting saprobic microfungi associated with dead plant materials of Hedychium coronarium, Lilium longiflorum, and Magnolia species. The taxa reported in this study belong to the orders Pleosporales and Kirschsteiniotheliales (Dothideomycetes). These taxa were identified based on multi-locus phylogeny of nuclear ribosomal DNA (rDNA) (LSU, SSU, and ITS) and protein-coding genes (tef1-α and rpb2), together with comprehensive morphological characterization. Two novel saprobic species, Leptoparies magnoliae sp. nov. and Neobambusicola magnoliae sp. nov., are introduced from Magnolia species in Thailand. Another new species, Asymmetrispora zingiberacearum sp. nov., is also described from dead stems of H. coronarium, which is the first asexual morph species of the genus Asymmetrispora. In addition, Ramusculicola thailandica and Kirschsteiniothelia thailandica are reported as new host records from dead twigs of Magnolia species. Sphaerellopsis paraphysata is reported as a new host record from L. longiflorum. Newly described taxa are compared with other similar species and detailed descriptions, micrographs, and phylogenetic trees to show the positions are provided.
RESUMEN
Climate change agitates interactions between organisms and the environment and forces them to adapt, migrate, get replaced by others, or extinct. Marine environments are extremely sensitive to climate change that influences their ecological functions and microbial community including fungi. Fungi from marine habitats are engaged and adapted to perform diverse ecological functions in marine environments. Several studies focus on how complex interactions with the surrounding environment affect fungal evolution and their adaptation. However, a review addressing the adaptation of marine fungi to climate change is still lacking. Here we have discussed the adaptations of fungi in the marine environment with an example of Hortaea werneckii and Aspergillus terreus which may help to reduce the risk of climate change impacts on marine environments and organisms. We address the ecology and evolution of marine fungi and the effects of climate change on them to explain the adaptation mechanism. A review of marine fungal adaptations will show widespread effects on evolutionary biology and the mechanism responsible for it.
RESUMEN
Collections of microfungi on bamboo and grasses in Thailand revealed an interesting species morphologically resembling Lophiostoma, but which can be distinguished from the latter based on multi-locus phylogeny. In this paper, a new genus, Sublophiostoma is introduced to accommodate the taxon, S. thailandica sp. nov. Phylogenetic analyses using combined ITS, LSU, RPB2, SSU, and TEF sequences demonstrate that six strains of the new species form a distinct clade within Pleosporales, but cannot be assigned to any existing family. Therefore, a new family Sublophiostomataceae (Pleosporales) is introduced to accommodate the new genus. The sexual morph of Sublophiostomataceae is characterized by subglobose to hemisphaerical, ostiolate ascomata, with crest-like openings, a peridium with cells of textura angularis to textura epidermoidea, cylindric-clavate asci with a bulbous or foot-like narrow pedicel and a well-developed ocular chamber, and hyaline, fusiform, 1-septate ascospores surrounded by a large mucilaginous sheath. The asexual morph (coelomycetous) of the species are observed on culture media.
Asunto(s)
Ascomicetos/clasificación , Ascomicetos/genética , ADN de Hongos/genética , ADN Ribosómico/genética , Filogenia , Análisis de Secuencia de ADN/métodos , Especificidad de la Especie , Esporas Fúngicas/genética , TailandiaRESUMEN
Plant pathogens cause severe losses or damage to crops worldwide and thereby significantly reduce the quality and quantity of agricultural commodities. World tendencies are shifting towards reducing the usage of chemically synthesized pesticides, while various biocontrol methods, strategies and approaches are being used in plant disease management. Fungal antagonists play a significant role in controlling plant pathogens and diseases and they are used as Biocontrol Agents (BCAs) throughout the world. This review provides a comprehensive list of fungal BCAs used against fungal plant pathogens according to modern taxonomic concepts, and clarifies their phylogenetic relationships because thewrong names are frequently used in the literature of biocontrol. Details of approximately 300 fungal antagonists belonging to 13 classes and 113 genera are listed together with the target pathogens and corresponding plant diseases. Trichoderma is identified as the genus with greatest potential comprising 25 biocontrol agents that have been used against a number of plant fungal diseases. In addition to Trichoderma, nine genera are recognized as significant comprising five or more known antagonistic species, namely, Alternaria, Aspergillus, Candida, Fusarium, Penicillium, Pichia, Pythium, Talaromyces, and Verticillium. A phylogenetic analysis based on partial sequences of the 28S nrRNA gene (LSU) of fungal antagonists was performed to establish their phylogenetic relationships.
Asunto(s)
Hongos , Fusarium , Filogenia , Enfermedades de las Plantas/prevención & control , PlantasRESUMEN
A novel ascomycetous genus, Elongaticollum, occurring on leaf litter of Hedychium coronarium (Zingiberaceae) in Taiwan, is described and illustrated. Elongaticollum is characterized by dark brown to black, superficial, obpyriform, pycnidial conidiomata with a distinct elongate neck, and oval to oblong, hyaline, aseptate conidia. Phylogenetic analyses (maximum likelihood, maximum parsimony and Bayesian) of combined ITS, LSU, SSU and tef1-α sequence data revealed Elongaticollum as a distinct genus within the family Phaeosphaeriaceae with high statistical support. In addition, Ophiosphaerella taiwanensis and Phaeosphaeriopsis beaucarneae are described as new species from dead leaves of Agave tequilana and Beaucarnea recurvata (Asparagaceae), respectively. Neosetophoma poaceicola is reported as a new host record from dead leaves of Musa acuminata (Musaceae). Newly described taxa are compared with other similar species and comprehensive descriptions and micrographs are provided.
RESUMEN
Pleosporales species are important plant pathogens, saprobes, and endophytes on a wide range of economically important plant hosts. The classification of Pleosporales has undergone various modifications in recent years due to the addition of many families described from multiple habitats with a high level of morphological deviation. Numerous asexual genera have been described in Pleosporales that can be either hyphomyceteous or coelomycetous. Phoma- or coniothyrium-like species are common and have been revealed as polyphyletic in the order Pleosporales and linked with several sexual genera. A total of 31 pleosporalean strains were isolated in different regions of Taiwan between 2017 and 2018 from the leaves of Camellia sinensis plants with symptoms of leaf spot disease. These strains were evaluated morphologically and genotypically using multi-locus sequence analyses of the ITS, LSU, SSU, rpb2, tef1 and tub2 genes. The results demonstrated the affiliation of these strains with the various families in Pleosporales and revealed the presence of one new genus (Neoshiraia) and eight new species (Alloconiothyrium camelliae, Amorocoelophoma camelliae, Leucaenicola camelliae, L. taiwanensis, Neoshiraia camelliae, N. taiwanensis, Paraconiothyrium camelliae and Paraphaeosphaeria camelliae). Furthermore, to the best of our understanding, Didymella segeticola, Ectophoma pomi and Roussoella mexican were reported for the first time from C. sinensis in Taiwan.
Asunto(s)
Ascomicetos/clasificación , Biodiversidad , Camellia sinensis/microbiología , Teorema de Bayes , ADN Intergénico , Ecosistema , Endófitos , Marcadores Genéticos , Genotipo , Funciones de Verosimilitud , Modelos Genéticos , Filogenia , Enfermedades de las Plantas/microbiología , Reacción en Cadena de la Polimerasa , Especificidad de la Especie , TaiwánRESUMEN
BACKGROUND: Bamboo is a widespread plant with medicinal value. During our taxonomic study on medicinal plants, three collections of Distoseptispora were made from China and Thailand. Phylogenetic analyses of combined LSU, ITS and RPB2 sequence data showed that two collections represented a new species, phylogenetically distinct from other described species in Distoseptispora. NEW INFORMATION: This new species has macronematous, mononematous conidiophores, polyblastic or monoblastic conidiogenous cells and acrogenous, solitary, straight, obclavate, multi-septate, thick-walled conidia. Distoseptispora bambusae sp. nov. is introduced with illustrations and a comprehensive description. The third collection on dead wood from Thailand was identified as D. tectona with newly-generated molecular data for this taxon.
RESUMEN
A novel ascomycete genus, Longihyalospora, occurring on leaf litter of Ficus ampelas in Dahu Forest Area in Chiayi, Taiwan is described and illustrated. Longihyalospora is characterized by dark mycelium covering the upper leaf surface, elongate mycelial pellicle with ring of setae, pale brown to brown peridium, broadly obovoid, short pedicellate asci and hyaline, fusiform, elongated (tapering ends) and multi-septate ascospores with a thin mucilaginous sheath. Phylogenetic analyses of combined ITS, LSU and SSU sequence data revealed Longihyalospora as a distinct genus within the Chaetothyriaceae with high bootstrap support. Moreover, based on morphological similarities, Chaetothyrium vermisporum transferred to the new genus. In addition, Ceramothyrium longivolcaniforme is reported for the first time on Ficus ampelas. Newly added species are compared with other similar species and comprehensive descriptions and micrographs are provided.
RESUMEN
This paper provides recommendations of one name for use among pleomorphic genera in Dothideomycetes by the Working Group on Dothideomycetes established under the auspices of the International Commission on the Taxonomy of Fungi (ICTF). A number of these generic names are proposed for protection because they do not have priority and/or the generic name selected for use is asexually typified. These include: Acrogenospora over Farlowiella; Alternaria over Allewia, Lewia, and Crivellia; Botryosphaeria over Fusicoccum; Camarosporula over Anthracostroma; Capnodium over Polychaeton; Cladosporium over Davidiella; Corynespora over Corynesporasca; Curvularia over Pseudocochliobolus; Elsinoë over Sphaceloma; Excipulariopsis over Kentingia; Exosporiella over Anomalemma; Exserohilum over Setosphaeria; Gemmamyces over Megaloseptoria; Kellermania over Planistromella; Kirschsteiniothelia over Dendryphiopsis; Lecanosticta over Eruptio; Paranectriella over Araneomyces; Phaeosphaeria over Phaeoseptoria; Phyllosticta over Guignardia; Podonectria over Tetracrium; Polythrincium over Cymadothea; Prosthemium over Pleomassaria; Ramularia over Mycosphaerella; Sphaerellopsis over Eudarluca; Sphaeropsis over Phaeobotryosphaeria; Stemphylium over Pleospora; Teratosphaeria over Kirramyces and Colletogloeopsis; Tetraploa over Tetraplosphaeria; Venturia over Fusicladium and Pollaccia; and Zeloasperisporium over Neomicrothyrium. Twenty new combinations are made: Acrogenospora carmichaeliana (Berk.) Rossman & Crous, Alternaria scrophulariae (Desm.) Rossman & Crous, Pyrenophora catenaria (Drechsler) Rossman & K.D. Hyde, P. dematioidea (Bubák & Wróbl.) Rossman & K.D. Hyde, P. fugax (Wallr.) Rossman & K.D. Hyde, P. nobleae (McKenzie & D. Matthews) Rossman & K.D. Hyde, P. triseptata (Drechsler) Rossman & K.D. Hyde, Schizothyrium cryptogamum (Batzer & Crous) Crous & Batzer, S. cylindricum (G.Y. Sun et al.) Crous & Batzer, S. emperorae (G.Y. Sun & L. Gao) Crous & Batzer, S. inaequale (G.Y. Sun & L. Gao) Crous & Batzer, S. musae (G.Y. Sun & L. Gao) Crous & Batzer, S. qianense (G.Y. Sun & Y.Q. Ma) Crous & Batzer, S. tardecrescens (Batzer & Crous) Crous & Batzer, S. wisconsinense (Batzer & Crous) Crous & Batzer, Teratosphaeria epicoccoides (Cooke & Massee) Rossman & W.C. Allen, Venturia catenospora (Butin) Rossman & Crous, V. convolvularum (Ondrej) Rossman & Crous, V. oleaginea (Castagne) Rossman & Crous, and V. phillyreae (Nicolas & Aggéry) Rossman & Crous, combs. nov. Three replacement names are also proposed: Pyrenophora grahamii Rossman & K.D. Hyde, Schizothyrium sunii Crous & Batzer, and Venturia barriae Rossman & Crous noms. nov.
RESUMEN
Article 59.1, of the International Code of Nomenclature for Algae, Fungi, and Plants (ICN; Melbourne Code), which addresses the nomenclature of pleomorphic fungi, became effective from 30 July 2011. Since that date, each fungal species can have one nomenclaturally correct name in a particular classification. All other previously used names for this species will be considered as synonyms. The older generic epithet takes priority over the younger name. Any widely used younger names proposed for use, must comply with Art. 57.2 and their usage should be approved by the Nomenclature Committee for Fungi (NCF). In this paper, we list all genera currently accepted by us in Dothideomycetes (belonging to 23 orders and 110 families), including pleomorphic and nonpleomorphic genera. In the case of pleomorphic genera, we follow the rulings of the current ICN and propose single generic names for future usage. The taxonomic placements of 1261 genera are listed as an outline. Protected names and suppressed names for 34 pleomorphic genera are listed separately. Notes and justifications are provided for possible proposed names after the list of genera. Notes are also provided on recent advances in our understanding of asexual and sexual morph linkages in Dothideomycetes. A phylogenetic tree based on four gene analyses supported 23 orders and 75 families, while 35 families still lack molecular data.