Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Small ; : e2403640, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38963162

RESUMEN

Ensuring precise drug release at target sites is crucial for effective treatment. Here, pH-responsive nanoparticles for oral administration of mycophenolate mofetil, an alternative therapy for patients with inflammatory bowel disease unresponsive to conventional treatments is developed. However, its oral administration presents challenges due to its low solubility in the small intestine and high solubility and absorption in the stomach. Therefore, this aim is to design a drug delivery system capable of maintaining drug solubility compared to the free drug while delaying absorption from the stomach to the intestine. Successful synthesis and assembly of a block copolymer incorporating a pH-responsive functional group is achieved. Dynamic light scattering indicated a significant change in hydrodynamic size when the pH exceeded 6.5, confirming successful incorporation of the pH-responsive group. Encapsulation and controlled release of mycophenolate mofetil are efficiently demonstrated, with 90% release observed at intestinal pH. In vitro cell culture studies confirmed biocompatibility, showing no toxicity or adverse effects on Caco-2 cells. In vivo oral rat studies indicated reduced drug absorption in the stomach and enhanced absorption in the small intestine with the developed formulation. This research presents a promising drug delivery system with potential applications in the treatment of inflammatory bowel disease.

2.
ACS Sens ; 7(8): 2358-2369, 2022 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-35848726

RESUMEN

Therapeutic drug monitoring (TDM) is an essential clinical practice for optimizing drug dosing, thereby preventing adverse effects of drugs with a narrow therapeutic window, slow clearance, or high interperson pharmacokinetic variability. Monitoring methotrexate (MTX) during high-dose MTX (HD-MTX) therapy is necessary to avoid potentially fatal side effects caused by delayed elimination. Despite the efficacy of HD-MTX treatment, its clinical application in resource-limited settings is constrained due to the relatively high cost and time of analysis with conventional analysis methods. In this work, we developed (i) an electrochemically assisted surface-enhanced Raman spectroscopy (SERS) method for detecting MTX in human serum at a clinically relevant concentration range and (ii) a benchtop, Raman detection system with an integrated potentiostat, software, and data analysis unit that enables mapping of small areas of SERS substrates and quantitative SERS-based analysis. In the assay, by promoting electrostatic attraction between gold-coated nanopillar SERS substrates and MTX molecules in aqueous samples, a detection limit of 0.13 µM with a linear range of 0.43-2 µM was achieved in PBS. The implemented sample cleanup through gel filtration proved to be highly effective, resulting in a similar detection limit (0.55 µM) and linear range (1.81-5 µM) for both PBS and serum. The developed and optimized assay could also be used on the in-house built, Raman device. We showed that MTX detection can be carried out in less than 30 min with the Raman device, paving the way toward the TDM of MTX at the point-of-need and in resource-limited environments.


Asunto(s)
Metotrexato , Espectrometría Raman , Bioensayo , Monitoreo de Drogas/métodos , Oro/química , Humanos , Espectrometría Raman/métodos
3.
J Control Release ; 329: 948-954, 2021 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-33086101

RESUMEN

Delivering macromolecular drugs, e.g. peptides, to the systemic circulation by oral administration is challenging due to their degradation in the gastrointestinal tract and low transmucosal permeation. In this study, the concept of an oral delivery device utilizing an elastomeric material is presented with the potential of increasing the absorption of peptides, e.g. insulin. Absorption enhancement in the intestine is proposed as a result of self-unfolding of a polydimethylsiloxane foil upon release from enteric coated capsules. A pH-sensitive polymer coating prevents capsule disintegration until arrival in the small intestine where complete unfolding of the elastomeric foil ensures close contact with the intestinal mucosa. Foils with close-packed hexagonal compartments for optimal drug loading are produced by casting against a deep-etched silicon master. Complete unfolding of the foil upon capsule disintegration is verified in vitro and the insulin release profile of the final delivery device confirms insulin protection at gastric pH. In vivo performance is evaluated with the outcome of quantifiable plasma insulin concentrations in all rats receiving duodenal administration of the novel delivery device. By taking advantage of elastomeric material properties for drug delivery, this approach might serve as inspiration for further development of commercially viable biocompatible devices for oral delivery of macromolecules.


Asunto(s)
Sistemas de Liberación de Medicamentos , Insulina , Administración Oral , Animales , Cápsulas , Absorción Intestinal , Sustancias Macromoleculares , Ratas
4.
Sensors (Basel) ; 20(4)2020 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-32070014

RESUMEN

Micromechanical Thermal Analysis utilizes microstring resonators to analyze a minimum amount of sample to obtain both the thermal and mechanical responses of the sample during a heating ramp. We introduce a modulated setup by superimposing a sinusoidal heating on the linear heating and implementing a post-measurement data deconvolution process. This setup is utilized to take a closer look at the glass transition as an important fundamental feature of amorphous matter with relations to the processing and physical stability of small molecule drugs. With an additionally developed image and qualitative mode shape analysis, we are able to separate distinct features of the glass transition process and explain a previously observed two-fold change in resonance frequency. The results from this setup indicate the detection of initial relaxation to viscous flow onset as well as differences in mode responsivity and possible changes in the primary resonance mode of the string resonators. The modulated setup is helpful to distinguish these processes during the glass transition with varying responses in the frequency and quality factor domain and offers a more robust way to detect the glass transition compared to previously developed methods. Furthermore, practical and theoretical considerations are discussed when performing measurements on string resonators (and comparable emerging analytical techniques) for physicochemical characterization.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...