Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Front Vet Sci ; 10: 1294049, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38094496

RESUMEN

Introduction: Rabies, a deadly zoonotic viral disease, accounts for over 50,000 fatalities globally each year. This disease predominantly plagues developing nations, with Thailand being no exception. In the current global landscape, concerted efforts are being mobilized to curb human mortalities attributed to animal-transmitted rabies. For strategic allocation and optimization of resources, sophisticated and accurate forecasting of rabies incidents is imperative. This research aims to determine temporal patterns, and seasonal fluctuations, and project the incidence of canine rabies throughout Thailand, using various time series techniques. Methods: Monthly total laboratory-confirmed rabies cases data from January 2013 to December 2022 (full dataset) were split into the training dataset (January 2013 to December 2021) and the test dataset (January to December 2022). Time series models including Seasonal Autoregressive Integrated Moving Average (SARIMA), Neural Network Autoregression (NNAR), Error Trend Seasonality (ETS), the Trigonometric Exponential Smoothing State-Space Model with Box-Cox transformation, ARMA errors, Trend and Seasonal components (TBATS), and Seasonal and Trend Decomposition using Loess (STL) were used to analyze the training dataset and the full dataset. The forecast values obtained from the time series models applied to the training dataset were compared with the actual values from the test dataset to determine their predictive performance. Furthermore, the forecast projections from January 2023 to December 2025 were generated from models applied to the full dataset. Results: The findings revealed a total of 4,678 confirmed canine rabies cases during the study duration, with apparent seasonality in the data. Among the models tested with the test dataset, TBATS exhibited superior predictive accuracy, closely trailed by the SARIMA model. Based on the full dataset, TBATS projections suggest an annual average of approximately 285 canine rabies cases for the years 2023 to 2025, translating to a monthly average of 23 cases (range: 18-30). In contrast, SARIMA projections averaged 277 cases annually (range: 208-214). Discussion: This research offers a new perspective on disease forecasting through advanced time series methodologies. The results should be taken into consideration when planning and conducting rabies surveillance, prevention, and control activities.

2.
One Health ; 15: 100411, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36277110

RESUMEN

Despite ongoing control efforts, rabies remains an endemic zoonotic disease in many countries. Determining high-risk areas and the space-time patterns of rabies spread, as it relates to epidemiologically important factors, can support policymakers and program managers alike to develop evidence-based targeted surveillance and control programs. In this One Health approach which selected Thailand as the example site, the location-based risk of contracting dog-mediated rabies by both human and animal populations was quantified using a Bayesian spatial regression model. Specifically, a conditional autoregressive (CAR) Bayesian zero-inflated Poisson (ZIP) regression was fitted to the reported human and animal rabies case counts of each district, from the 2012-2017 period. The human population was used as an offset. The epidemiologically important factors hypothesized as risk modifiers and therefore tested as predictors included: number of dog bites/attacks, the population of dogs and cats, number of Buddhist temples, garbage dumps, animal vaccination, post-exposure prophylaxis, poverty, and shared administrative borders. Disparate sources of data were used to improve the estimated associations and predictions. Model performance was assessed using cross-validation. Results suggested that accounting for the association between human and animal rabies with number of dog bites/attacks, number of owned and un-owned dogs; shared country borders, number of Buddhist temples, poverty levels, and accounting for spatial dependence between districts, may help to predict the risk districts for dog-mediated rabies in Thailand. The fitted values of the spatial regression were mapped to illustrate the risk of dog-mediated rabies. The cross-validation indicated an adequate performance of the spatial regression model (AUC = 0.81), suggesting that had this spatial regression approach been used to identify districts at risk in 2015, the cases reported in 2016/17 would have been predicted with model sensitivity and specificity of 0.71 and 0.80, respectively. While active surveillance is ideal, this approach of using multiple data sources to improve risk estimation may inform current rabies surveillance and control efforts including determining rabies-free zones, and the roll-out of human post-exposure prophylaxis and anti-rabies vaccines for animals in determining high-risk areas.

3.
Trop Anim Health Prod ; 54(4): 209, 2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35687155

RESUMEN

In Thailand, pork is one of the most consumed meats nationwide. Pig farming is hence an important business in the country. However, 95% of the farms were considered smallholders raising only 50 pigs or less. With limited budgets and resources, the biosecurity level in these farms is relatively low. Pig movements have been previously identified as a risk factor in the spread of infectious diseases. Therefore, the present study aimed to explicitly analyze the pig movement network structure and assess its vulnerability to the spread of emerging diseases in Thailand. We used official electronic records of nationwide pig movements throughout the year 2021 to construct a directed weighted one-mode network. Degree centrality, degree distribution, connected components, network community, and modularity were measured to explore the network architectures and properties. In this network, 484,483 pig movements were captured. In which, 379,948 (78.42%) were moved toward slaughterhouses and hence excluded from further analyses. From the remaining links, we suggested that the pig movement network in Thailand was vulnerable to the spread of emerging infectious diseases. Within the network, we found a strongly connected component (SCC) connecting 1044 subdistricts (38.6% of the nodes), a giant weakly connected component (GWCC) covering 98.2% of the nodes (2654/2704), and inter-regional communities with overall network modularity of 0.68. The disease may rapidly spread throughout the country. A better understanding of the nationwide pig movement networks is helpful in tailoring control interventions to cope with the newly emerged diseases once introduced.


Asunto(s)
Enfermedades Transmisibles Emergentes , Enfermedades de los Porcinos , Crianza de Animales Domésticos , Animales , Enfermedades Transmisibles Emergentes/epidemiología , Enfermedades Transmisibles Emergentes/veterinaria , Porcinos , Enfermedades de los Porcinos/epidemiología , Tailandia/epidemiología , Transportes
4.
JMIR Form Res ; 6(5): e34279, 2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35639455

RESUMEN

BACKGROUND: African swine fever (ASF), a highly contagious disease affecting both domestic and wild pigs, has been having a serious impact on the swine industry worldwide. This important transboundary animal disease can be spread by animals and ticks via direct transmission and by contaminated feed and fomites via indirect transmission because of the high environmental resistance of the ASF virus. Thus, the prevention of the introduction of ASF to areas free of ASF is essential. After an outbreak was reported in China, intensive import policies and biosecurity measures were implemented to prevent the introduction of ASF to pig farms in Thailand. OBJECTIVE: Enhancing prevention and control, this study aims to identify the potential areas for ASF introduction and transmission in Thailand, develop a tool for farm assessment of ASF risk introduction focusing on smallholders, and develop a spatial analysis tool that is easily used by local officers for disease prevention and control planning. METHODS: We applied a multi-criteria decision analysis approach with spatial and farm assessment and integrated the outputs with the necessary spatial layers to develop a spatial analysis on a web-based platform. RESULTS: The map that referred to potential areas for ASF introduction and transmission was derived from 6 spatial risk factors; namely, the distance to the port, which had the highest relative importance, followed by the distance to the border, the number of pig farms using swill feeding, the density of small pig farms (<50 heads), the number of pigs moving in the area, and the distance to the slaughterhouse. The possible transmission areas were divided into 5 levels (very low, low, medium, high, and very high) at the subdistrict level, with 27 subdistricts in 10 provinces having very high suitability and 560 subdistricts in 34 provinces having high suitability. At the farm level, 17 biosecurity practices considered as useful and practical for smallholders were selected and developed on a mobile app platform. The outputs from the previous steps integrated with necessary geographic information system layers were added to a spatial analysis web-based platform. CONCLUSIONS: The tools developed in this study have been complemented with other strategies to fight against the introduction of ASF to pig farms in the country. The areas showing high and very high risk for disease introduction and transmission were applied for spatial information planning, for example, intensive surveillance, strict animal movement, and public awareness. In addition, farms with low biosecurity were improved in these areas, and the risk assessment developed on a mobile app in this study helped enhance this matter. The spatial analysis on a web-based platform helped facilitate disease prevention planning for the authorities.

5.
PLoS Negl Trop Dis ; 15(12): e0009980, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34851953

RESUMEN

The situation of human rabies in Thailand has gradually declined over the past four decades. However, the number of animal rabies cases has slightly increased in the last ten years. This study thus aimed to describe the characteristics of animal rabies between 2017 and 2018 in Thailand in which the prevalence was fairly high and to quantify the association between monthly rabies occurrences and explainable variables using the generalized additive models (GAMs) to predict the spatial risk areas for rabies spread. Our results indicate that the majority of animals affected by rabies in Thailand are dogs. Most of the affected dogs were owned, free or semi-free roaming, and unvaccinated. Clusters of rabies were highly distributed in the northeast, followed by the central and the south of the country. Temporally, the number of cases gradually increased after June and reached a peak in January. Based on our spatial models, human and cattle population density as well as the spatio-temporal history of rabies occurrences, and the distances from the cases to the secondary roads and country borders are identified as the risk factors. Our predictive maps are applicable for strengthening the surveillance system in high-risk areas. Nevertheless, the identified risk factors should be rigorously considered and integrated into the strategic plans for the prevention and control of animal rabies in Thailand.


Asunto(s)
Enfermedades de los Perros/epidemiología , Enfermedades de los Perros/prevención & control , Modelos Estadísticos , Rabia/epidemiología , Rabia/veterinaria , Análisis Espacial , Animales , Enfermedades de los Perros/virología , Perros , Rabia/prevención & control , Vacunas Antirrábicas/administración & dosificación , Vacunas Antirrábicas/inmunología , Factores de Riesgo , Tailandia/epidemiología
6.
Front Vet Sci ; 8: 699352, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34490393

RESUMEN

Rabies is a deadly zoonotic disease responsible for almost 60,000 deaths each year, especially in Africa and Asia including Thailand. Dogs are the major reservoirs for rabies virus in these settings. This study thus used the concept of knowledge, attitudes, and practices (KAP) to identify socioeconomic factors that contribute to the differences in the canine rabies occurrences in high and low-risk areas which were classified by a Generalized Additive Model (GAM). Multistage sampling was then applied to designate the study locations and a KAP-based questionnaire was used to retrieve data and relevant perspectives from the respondents. Based on the responses from 476 participants living across four regions of Thailand, we found that the knowledge of the participants was positively correlated with their behaviors but negatively associated with the attitudes. Participants who are male, younger, educated at the level of middle to high school, or raising more dogs are likely to have negative attitudes but good knowledge on rabies prevention and control whereas farmers with lower income had better attitudes regardless of their knowledge. We found that people in a lower socioeconomic status with a lack of knowledge are not willing to pay at a higher vaccine price. Public education is a key to change dog owners' behaviors. Related authorities should constantly educate people on how to prevent and control rabies in their communities. Our findings should be applicable to other countries with similar socioeconomic statuses.

7.
One Health Outlook ; 3(1): 12, 2021 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-34218820

RESUMEN

BACKGROUND: Nipah virus (NiV) infection causes encephalitis and has > 75% mortality rate, making it a WHO priority pathogen due to its pandemic potential. There have been NiV outbreak(s) in Malaysia, India, Bangladesh, and southern Philippines. NiV naturally circulates among fruit bats of the genus Pteropus and has been detected widely across Southeast and South Asia. Both Malaysian and Bangladeshi NiV strains have been found in fruit bats in Thailand. This study summarizes 20 years of pre-emptive One Health surveillance of NiV in Thailand, including triangulated surveillance of bats, and humans and pigs in the vicinity of roosts inhabited by NiV-infected bats. METHODS: Samples were collected periodically and tested for NiV from bats, pigs and healthy human volunteers from Wat Luang village, Chonburi province, home to the biggest P. lylei roosts in Thailand, and other provinces since 2001. Archived cerebrospinal fluid specimens from encephalitis patients between 2001 and 2012 were also tested for NiV. NiV RNA was detected using nested reverse transcription polymerase chain reaction (RT-PCR). NiV antibodies were detected using enzyme-linked immunosorbent assay or multiplex microsphere immunoassay. RESULTS: NiV RNA (mainly Bangladesh strain) was detected every year in fruit bats by RT-PCR from 2002 to 2020. The whole genome sequence of NiV directly sequenced from bat urine in 2017 shared 99.17% identity to NiV from a Bangladeshi patient in 2004. No NiV-specific IgG antibodies or RNA have been found in healthy volunteers, encephalitis patients, or pigs to date. During the sample collection trips, 100 community members were trained on how to live safely with bats. CONCLUSIONS: High identity shared between the NiV genome from Thai bats and the Bangladeshi patient highlights the outbreak potential of NiV in Thailand. Results from NiV cross-sectoral surveillance were conveyed to national authorities and villagers which led to preventive control measures, increased surveillance of pigs and humans in vicinity of known NiV-infected roosts, and increased vigilance and reduced risk behaviors at the community level. This proactive One Health approach to NiV surveillance is a success story; that increased collaboration between the human, animal, and wildlife sectors is imperative to staying ahead of a zoonotic disease outbreak.

8.
Front Vet Sci ; 8: 790701, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34993247

RESUMEN

Poor management of dog populations causes many problems in different countries, including rabies. To strategically design a dog population management, certain sets of data are required, such as the population size and spatial distribution of dogs. However, these data are rarely available or incomplete. Hence, this study aimed to describe the characteristics of dog populations in Thailand, explore their spatial distribution and relevant factors, and estimate the number of dogs in the whole country. First, four districts were selected as representatives of each region. Each district was partitioned into grids with a 300-m resolution. The selected grids were then surveyed, and the number of dogs and related data were collected. Random forest models with a two-part approach were used to quantify the association between the surveyed dog population and predictor variables. The spatial distribution of dog populations was then predicted. A total of 1,750 grids were surveyed (945 grids with dog presence and 805 grids with dog absence). Among the surveyed dogs, 86.6% (12,027/13,895) were owned. Of these, 51% were classified as independent, followed by confined (25%), semi-independent (21%), and unidentified dogs (3%). Seventy-two percent (1,348/1,868) of the ownerless dogs were feral, and the rest were community dogs. The spatial pattern of the dog populations was highly distributed in big cities such as Bangkok and its suburbs. In owned dogs, it was linked to household demographics, whereas it was related to community factors in ownerless dogs. The number of estimated dogs in the entire country was 12.8 million heads including 11.2 million owned dogs (21.7 heads/km2) and 1.6 million ownerless dogs (3.2 heads/km2). The methods developed here are extrapolatable to a larger area and use much less budget and manpower compared to the present practices. Our results are helpful for canine rabies prevention and control programs, such as dog population management and control and rabies vaccine allocation.

9.
Prev Vet Med ; 185: 105183, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33153767

RESUMEN

In our study, we used geographic information system (GIS)-based multi-criteria decision analysis (MCDA) to predict suitable areas for foot and mouth disease (FMD) occurrence in Thailand. Eleven experts evaluated 10 spatial risk factors associated with the occurrence and spread of FMD in Thailand during 2014-2015. The analytic hierarchy process was used to conduct problem structuring and prioritising of pairwise comparisons with criterion weighting. Important spatial risk factors were converted to geographical layers using standardised fuzzy membership. Thus, weight linear combination was used to combine and create suitability and uncertainty maps as well as to perform sensitivity analysis. We identified areas in northern, north-eastern, western, and central Thailand as hotspots of FMD occurrence. In the predictive map, the suitable areas presented a moderate degree of agreement with those after FMD outbreaks in the year 2016 (AUC = 0.71, 95 %CI: 0.68-0.75). In conclusion, GIS-based MCDA mapping well supported veterinary services in identifying hotspot areas of FMD occurrence in Thailand. This tool was very useful for disease surveillance.


Asunto(s)
Búfalos , Enfermedades de los Bovinos/epidemiología , Técnicas de Apoyo para la Decisión , Fiebre Aftosa/epidemiología , Sistemas de Información Geográfica , Enfermedades de los Porcinos/epidemiología , Animales , Bovinos , Enfermedades de los Bovinos/virología , Industria Lechera , Brotes de Enfermedades/veterinaria , Fiebre Aftosa/virología , Factores de Riesgo , Sus scrofa , Porcinos , Enfermedades de los Porcinos/virología , Tailandia/epidemiología
10.
BMC Vet Res ; 16(1): 300, 2020 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-32838786

RESUMEN

BACKGROUND: Nipah virus (NiV) is a fatal zoonotic agent that was first identified amongst pig farmers in Malaysia in 1998, in an outbreak that resulted in 105 fatal human cases. That epidemic arose from a chain of infection, initiating from bats to pigs, and which then spilled over from pigs to humans. In Thailand, bat-pig-human communities can be observed across the country, particularly in the central plain. The present study therefore aimed to identify high-risk areas for potential NiV outbreaks and to model how the virus is likely to spread. Multi-criteria decision analysis (MCDA) and weighted linear combination (WLC) were employed to produce the NiV risk map. The map was then overlaid with the nationwide pig movement network to identify the index subdistricts in which NiV may emerge. Subsequently, susceptible-exposed-infectious-removed (SEIR) modeling was used to simulate NiV spread within each subdistrict, and network modeling was used to illustrate how the virus disperses across subdistricts. RESULTS: Based on the MCDA and pig movement data, 14 index subdistricts with a high-risk of NiV emergence were identified. We found in our infectious network modeling that the infected subdistricts clustered in, or close to the central plain, within a range of 171 km from the source subdistricts. However, the virus may travel as far as 528.5 km (R0 = 5). CONCLUSIONS: In conclusion, the risk of NiV dissemination through pig movement networks in Thailand is low but not negligible. The risk areas identified in our study can help the veterinary authority to allocate financial and human resources to where preventive strategies, such as pig farm regionalization, are required and to contain outbreaks in a timely fashion once they occur.


Asunto(s)
Infecciones por Henipavirus/veterinaria , Virus Nipah , Enfermedades de los Porcinos/epidemiología , Animales , Quirópteros/virología , Técnicas de Apoyo para la Decisión , Brotes de Enfermedades/prevención & control , Infecciones por Henipavirus/epidemiología , Infecciones por Henipavirus/transmisión , Humanos , Porcinos , Enfermedades de los Porcinos/virología , Tailandia/epidemiología , Transportes
11.
Am J Trop Med Hyg ; 103(2): 793-809, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32602435

RESUMEN

In moving toward malaria elimination, finer scale malaria risk maps are required to identify hotspots for implementing surveillance-response activities, allocating resources, and preparing health facilities based on the needs and necessities at each specific area. This study aimed to demonstrate the use of multi-criteria decision analysis (MCDA) in conjunction with geographic information systems (GISs) to create a spatial model and risk maps by integrating satellite remote-sensing and malaria surveillance data from 18 counties of Yunnan Province along the China-Myanmar border. The MCDA composite and annual models and risk maps were created from the consensus among the experts who have been working and know situations in the study areas. The experts identified and provided relative factor weights for nine socioeconomic and disease ecology factors as a weighted linear combination model of the following: ([Forest coverage × 0.041] + [Cropland × 0.086] + [Water body × 0.175] + [Elevation × 0.297] + [Human population density × 0.043] + [Imported case × 0.258] + [Distance to road × 0.030] + [Distance to health facility × 0.033] + [Urbanization × 0.036]). The expert-based model had a good prediction capacity with a high area under curve. The study has demonstrated the novel integrated use of spatial MCDA which combines multiple environmental factors in estimating disease risk by using decision rules derived from existing knowledge or hypothesized understanding of the risk factors via diverse quantitative and qualitative criteria using both data-driven and qualitative indicators from the experts. The model and fine MCDA risk map developed in this study could assist in focusing the elimination efforts in the specifically identified locations with high risks.


Asunto(s)
Agricultura , Altitud , Clima , Enfermedades Transmisibles Importadas/epidemiología , Bosques , Mapeo Geográfico , Malaria/epidemiología , Densidad de Población , Urbanización , China/epidemiología , Técnicas de Apoyo para la Decisión , Erradicación de la Enfermedad , Instituciones de Salud , Humanos , Malaria/prevención & control , Mianmar/epidemiología , Riesgo , Ríos , Análisis Espacio-Temporal
12.
Korean J Parasitol ; 58(3): 267-278, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32615740

RESUMEN

The heterogeneity and complexity of malaria involves political and natural environments, socioeconomic development, cross-border movement, and vector biology; factors that cannot be changed in a short time. This study aimed to assess the impact of economic growth and cross-border movement, toward elimination of malaria in Yunnan Province during its pre-elimination phase. Malaria data during 2011-2016 were extracted from 18 counties of Yunnan and from 7 villages, 11 displaced person camps of the Kachin Special Region II of Myanmar. Data of per-capita gross domestic product (GDP) were obtained from Yunnan Bureau of Statistics. Data were analyzed and mapped to determine spatiotemporal heterogeneity at county and village levels. There were a total 2,117 malaria cases with 85.2% imported cases; most imported cases came from Myanmar (78.5%). Along the demarcation line, malaria incidence rates in villages/camps in Myanmar were significantly higher than those of the neighboring villages in China. The spatial and temporal trends suggested that increasing per-capita GDP may have an indirect effect on the reduction of malaria cases when observed at macro level; however, malaria persists owing to complex, multi-faceted factors including poverty at individual level and cross-border movement of the workforce. In moving toward malaria elimination, despite economic growth, cooperative efforts with neighboring countries are critical to interrupt local transmission and prevent reintroduction of malaria via imported cases. Cross-border workers should be educated in preventive measures through effective behavior change communication, and investment is needed in active surveillance systems and novel diagnostic and treatment services during the elimination phase.


Asunto(s)
Economía , Malaria/epidemiología , Migrantes , China/epidemiología , Femenino , Guanosina Difosfato , Educación en Salud , Humanos , Malaria/prevención & control , Masculino , Mianmar/epidemiología , Factores Socioeconómicos
13.
PLoS One ; 15(1): e0221070, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31986146

RESUMEN

The analysis of census data aggregated by administrative units introduces a statistical bias known as the modifiable areal unit problem (MAUP). Previous researches have mostly assessed the effect of MAUP on upscaling models. The present study contributes to clarify the effects of MAUP on the downscaling methodologies, highlighting how a priori choices of scales and shapes could influence the results. We aggregated chicken and duck fine-resolution census in Thailand, using three administrative census levels in regular and irregular shapes. We then disaggregated the data within the Gridded Livestock of the World analytical framework, sampling predictors in two different ways. A sensitivity analysis on Pearson's r correlation statistics and RMSE was carried out to understand how size and shapes of the response variables affect the goodness-of-fit and downscaling performances. We showed that scale, rather than shapes and sampling methods, affected downscaling precision, suggesting that training the model using the finest administrative level available is preferable. Moreover, datasets showing non-homogeneous distribution but instead spatial clustering seemed less affected by MAUP, yielding higher Pearson's r values and lower RMSE compared to a more spatially homogenous dataset. Implementing aggregation sensitivity analysis in spatial studies could help to interpret complex results and disseminate robust products.


Asunto(s)
Censos , Ganado , Modelos Estadísticos , Animales , Sesgo , Pollos , Patos , Humanos , Análisis Espacial , Tailandia
14.
BMC Vet Res ; 15(1): 73, 2019 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-30832676

RESUMEN

BACKGROUND: Thailand's Central Plain is identified as a contact zone between pigs and flying foxes, representing a potential zoonotic risk. Nipah virus (NiV) has been reported in flying foxes in Thailand, but it has never been found in pigs or humans. An assessment of the suitability of NiV transmission at the spatial and farm level would be useful for disease surveillance and prevention. Multi-criteria decision analysis (MCDA), a knowledge-driven model, was used to map contact zones between local epizootic risk factors as well as to quantify the suitability of NiV transmission at the pixel and farm level. RESULTS: Spatial risk factors of NiV transmission in pigs were identified by experts as being of three types, including i) natural host factors (bat preferred areas and distance to the nearest bat colony), ii) intermediate host factors (pig population density), and iii) environmental factors (distance to the nearest forest, distance to the nearest orchard, distance to the nearest water body, and human population density). The resulting high suitable areas were concentrated around the bat colonies in three provinces in the East of Thailand, including Chacheongsao, Chonburi, and Nakhonnayok. The suitability of NiV transmission in pig farms in the study area was quantified as ranging from very low to medium suitability. CONCLUSIONS: We believe that risk-based surveillance in the identified priority areas may increase the chances of finding out NiV and other bat-borne pathogens and thereby optimize the allocation of financial resources for disease surveillance. In the long run, improvements of biosecurity in those priority areas may also contribute to preventing the spread of potential emergence of NiV and other bat-borne pathogens.


Asunto(s)
Quirópteros/virología , Infecciones por Henipavirus/veterinaria , Virus Nipah , Porcinos/virología , Animales , Técnicas de Apoyo para la Decisión , Infecciones por Henipavirus/epidemiología , Infecciones por Henipavirus/transmisión , Humanos , Medición de Riesgo , Tailandia/epidemiología
15.
Prev Vet Med ; 159: 171-181, 2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30314780

RESUMEN

The Highly Pathogenic Avian Influenza (HPAI) subtype H5N1 virus persists in many countries and has been circulating in poultry, wild birds. In addition, the virus has emerged in other species and frequent zoonotic spillover events indicate that there remains a significant risk to human health. It is crucial to understand the dynamics of the disease in the poultry industry to develop a more comprehensive knowledge of the risks of transmission and to establish a better distribution of resources when implementing control. In this paper, we develop a set of mathematical models that simulate the spread of HPAI H5N1 in the poultry industry in Thailand, utilising data from the 2004 epidemic. The model that incorporates the intensity of duck farming when assessing transmision risk provides the best fit to the spatiotemporal characteristics of the observed outbreak, implying that intensive duck farming drives transmission of HPAI in Thailand. We also extend our models using a sequential model fitting approach to explore the ability of the models to be used in "real time" during novel disease outbreaks. We conclude that, whilst predictions of epidemic size are estimated poorly in the early stages of disease outbreaks, the model can infer the preferred control policy that should be deployed to minimise the impact of the disease.


Asunto(s)
Brotes de Enfermedades/veterinaria , Patos , Subtipo H5N1 del Virus de la Influenza A/fisiología , Gripe Aviar/epidemiología , Gripe Aviar/transmisión , Enfermedades de las Aves de Corral/epidemiología , Enfermedades de las Aves de Corral/transmisión , Crianza de Animales Domésticos , Animales , Modelos Teóricos , Factores de Riesgo , Tailandia/epidemiología
16.
BMC Vet Res ; 12(1): 218, 2016 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-27716322

RESUMEN

BACKGROUND: In Thailand, pig production intensified significantly during the last decade, with many economic, epidemiological and environmental implications. Strategies toward more sustainable future developments are currently investigated, and these could be informed by a detailed assessment of the main trends in the pig sector, and on how different production systems are geographically distributed. This study had two main objectives. First, we aimed to describe the main trends and geographic patterns of pig production systems in Thailand in terms of pig type (native, breeding, and fattening pigs), farm scales (smallholder and large-scale farming systems) and type of farming systems (farrow-to-finish, nursery, and finishing systems) based on a very detailed 2010 census. Second, we aimed to study the statistical spatial association between these different types of pig farming distribution and a set of spatial variables describing access to feed and markets. RESULTS: Over the last decades, pig population gradually increased, with a continuously increasing number of pigs per holder, suggesting a continuing intensification of the sector. The different pig-production systems showed very contrasted geographical distributions. The spatial distribution of large-scale pig farms corresponds with that of commercial pig breeds, and spatial analysis conducted using Random Forest distribution models indicated that these were concentrated in lowland urban or peri-urban areas, close to means of transportation, facilitating supply to major markets such as provincial capitals and the Bangkok Metropolitan region. Conversely the smallholders were distributed throughout the country, with higher densities located in highland, remote, and rural areas, where they supply local rural markets. A limitation of the study was that pig farming systems were defined from the number of animals per farm, resulting in their possible misclassification, but this should have a limited impact on the main patterns revealed by the analysis. CONCLUSIONS: The very contrasted distribution of different pig production systems present opportunities for future regionalization of pig production. More specifically, the detailed geographical analysis of the different production systems will be used to spatially-inform planning decisions for pig farming accounting for the specific health, environment and economical implications of the different pig production systems.


Asunto(s)
Crianza de Animales Domésticos/estadística & datos numéricos , Análisis Espacial , Porcinos/fisiología , Crianza de Animales Domésticos/tendencias , Animales , Tailandia
17.
Sci Rep ; 6: 31096, 2016 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-27489997

RESUMEN

The Highly Pathogenic Avian Influenza H5N1 (HPAI) virus is now considered endemic in several Asian countries. In Cambodia, the virus has been circulating in the poultry population since 2004, with a dramatic effect on farmers' livelihoods and public health. In Thailand, surveillance and control are still important to prevent any new H5N1 incursion. Risk mapping can contribute effectively to disease surveillance and control systems, but is a very challenging task in the absence of reliable disease data. In this work, we used spatial multicriteria decision analysis (MCDA) to produce risk maps for HPAI H5N1 in poultry. We aimed to i) evaluate the performance of the MCDA approach to predict areas suitable for H5N1 based on a dataset from Thailand, comparing the predictive capacities of two sources of a priori knowledge (literature and experts), and ii) apply the best method to produce a risk map for H5N1 in poultry in Cambodia. Our results showed that the expert-based model had a very high predictive capacity in Thailand (AUC = 0.97). Applied in Cambodia, MCDA mapping made it possible to identify hotspots suitable for HPAI H5N1 in the Tonlé Sap watershed, around the cities of Battambang and Kampong Cham, and along the Vietnamese border.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Gripe Aviar/epidemiología , Modelos Estadísticos , Animales , Cambodia/epidemiología , Técnicas de Apoyo para la Decisión , Brotes de Enfermedades/prevención & control , Brotes de Enfermedades/estadística & datos numéricos , Brotes de Enfermedades/veterinaria , Monitoreo Epidemiológico/veterinaria , Mapeo Geográfico , Humanos , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Gripe Aviar/prevención & control , Gripe Humana/epidemiología , Gripe Humana/prevención & control , Aves de Corral , Factores de Riesgo , Tailandia/epidemiología
18.
PLoS One ; 10(7): e0133381, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26230336

RESUMEN

The rapid transformation of the livestock sector in recent decades brought concerns on its impact on greenhouse gas emissions, disruptions to nitrogen and phosphorous cycles and on land use change, particularly deforestation for production of feed crops. Animal and human health are increasingly interlinked through emerging infectious diseases, zoonoses, and antimicrobial resistance. In many developing countries, the rapidity of change has also had social impacts with increased risk of marginalisation of smallholder farmers. However, both the impacts and benefits of livestock farming often differ between extensive (backyard farming mostly for home-consumption) and intensive, commercial production systems (larger herd or flock size, higher investments in inputs, a tendency towards market-orientation). A density of 10,000 chickens per km2 has different environmental, epidemiological and societal implications if these birds are raised by 1,000 individual households or in a single industrial unit. Here, we introduce a novel relationship that links the national proportion of extensively raised animals to the gross domestic product (GDP) per capita (in purchasing power parity). This relationship is modelled and used together with the global distribution of rural population to disaggregate existing 10 km resolution global maps of chicken and pig distributions into extensive and intensive systems. Our results highlight countries and regions where extensive and intensive chicken and pig production systems are most important. We discuss the sources of uncertainties, the modelling assumptions and ways in which this approach could be developed to forecast future trajectories of intensification.


Asunto(s)
Crianza de Animales Domésticos/economía , Pollos , Sus scrofa , Crianza de Animales Domésticos/métodos , Animales , Países en Desarrollo , Ambiente , Humanos , Renta , Modelos Económicos , Cambio Social
19.
BMC Vet Res ; 11: 81, 2015 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-25880385

RESUMEN

BACKGROUND: A major reservoir of Nipah virus is believed to be the flying fox genus Pteropus, a fruit bat distributed across many of the world's tropical and sub-tropical areas. The emergence of the virus and its zoonotic transmission to livestock and humans have been linked to losses in the bat's habitat. Nipah has been identified in a number of indigenous flying fox populations in Thailand. While no evidence of infection in domestic pigs or people has been found to date, pig farming is an active agricultural sector in Thailand and therefore could be a potential pathway for zoonotic disease transmission from the bat reservoirs. The disease, then, represents a potential zoonotic risk. To characterize the spatial habitat of flying fox populations along Thailand's Central Plain, and to map potential contact zones between flying fox habitats, pig farms and human settlements, we conducted field observation, remote sensing, and ecological niche modeling to characterize flying fox colonies and their ecological neighborhoods. A Potential Surface Analysis was applied to map contact zones among local epizootic actors. RESULTS: Flying fox colonies are found mainly on Thailand's Central Plain, particularly in locations surrounded by bodies of water, vegetation, and safe havens such as Buddhist temples. High-risk areas for Nipah zoonosis in pigs include the agricultural ring around the Bangkok metropolitan region where the density of pig farms is high. CONCLUSIONS: Passive and active surveillance programs should be prioritized around Bangkok, particularly on farms with low biosecurity, close to water, and/or on which orchards are concomitantly grown. Integration of human and animal health surveillance should be pursued in these same areas. Such proactive planning would help conserve flying fox colonies and should help prevent zoonotic transmission of Nipah and other pathogens.


Asunto(s)
Quirópteros/fisiología , Infecciones por Henipavirus/veterinaria , Virus Nipah/fisiología , Distribución Animal , Animales , Quirópteros/virología , Reservorios de Enfermedades , Sistemas de Información Geográfica , Infecciones por Henipavirus/epidemiología , Infecciones por Henipavirus/virología , Humanos , Modelos Biológicos , Factores de Riesgo , Porcinos , Enfermedades de los Porcinos/epidemiología , Enfermedades de los Porcinos/virología , Tailandia/epidemiología
20.
BMC Vet Res ; 10: 174, 2014 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-25091559

RESUMEN

BACKGROUND: Porcine reproductive and respiratory syndrome (PRRS) has become a worldwide endemic disease of pigs. In 2006, an atypical and more virulent PRRS (HP-PRRS) emerged in China and spread to many countries, including Thailand. This study aimed to provide a first description of the spatio-temporal pattern of PRRS in Thailand and to quantify the statistical relationship between the presence of PRRS at the sub-district level and a set of risk factors. This should provide a basis for improving disease surveillance and control of PRRS in Thailand. RESULTS: Spatial scan statistics were used to detect clusters of outbreaks and allowed the identification of six spatial clusters covering 15 provinces of Thailand. Two modeling approaches were used to relate the presence or absence of PRRS outbreaks at the sub-district level to demographic characteristics of pig farming and other epidemiological spatial variables: autologistic multiple regressions and boosted regression trees (BRT). The variables showing a statistically significant association with PRRS presence in the autologistic multiple regression model were the sub-district human population and number of farms with breeding sows. The predictive power of the model, as measured by the area under the curve (AUC) of the receiver operating characteristics (ROC) plots was moderate. BRT models had higher goodness of fit the metrics and identified the sub-district human population and density of farms with breeding sows as important predictor variables. CONCLUSIONS: The results indicated that farms with breeding sows may be an important group for targeted surveillance and control. However, these findings obtained at the sub-district level should be complemented by farm-level epidemiological investigations in order to obtain a more comprehensive view of the factors affecting PRRS presence. In this study, the outbreaks of PRRS could not be differentiated from the potential novel HP-PPRS form, which was recently discovered in the country.


Asunto(s)
Síndrome Respiratorio y de la Reproducción Porcina/epidemiología , Virus del Síndrome Respiratorio y Reproductivo Porcino/patogenicidad , Animales , Brotes de Enfermedades/veterinaria , Modelos Logísticos , Análisis Multivariante , Síndrome Respiratorio y de la Reproducción Porcina/transmisión , Síndrome Respiratorio y de la Reproducción Porcina/virología , Porcinos , Tailandia/epidemiología , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...