Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(5)2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38473720

RESUMEN

The currently available anti-cancer therapies, such as gamma-radiation and chemotherapeutic agents, induce cell death and cellular senescence not only in cancer cells but also in the adjacent normal tissue. New anti-tumor approaches focus on limiting the side effects on normal cells. In this frame, the potential anti-tumor properties of Pulsed Electromagnetic Fields (PEMFs) through the irradiation of breast cancer epithelial cells (MCF-7 and MDA-MB-231) and normal fibroblasts (FF95) were investigated. PEMFs had a frequency of 8 Hz, full-square wave type and magnetic flux density of 0.011 T and were applied twice daily for 5 days. The data collected showcase that PEMF application decreases the proliferation rate and viability of breast cancer cells while having the opposite effect on normal fibroblasts. Moreover, PEMF irradiation induces cell death and cellular senescence only in breast cancer cells without any effect in the non-cancerous cells. These findings suggest PEMF irradiation as a novel, non-invasive anti-cancer strategy that, when combined with senolytic drugs, may eliminate both cancer and the remaining senescent cells, while simultaneously avoiding the side effects of the current treatments.


Asunto(s)
Neoplasias de la Mama , Campos Electromagnéticos , Humanos , Femenino , Muerte Celular , Senescencia Celular , Fibroblastos
2.
J Exp Clin Cancer Res ; 42(1): 187, 2023 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-37507762

RESUMEN

BACKGROUND: Prostate cancer is a major cause of cancer morbidity and mortality in men worldwide. Androgen deprivation therapy (ADT) has proven effective in early-stage androgen-sensitive disease, but prostate cancer gradually develops into an androgen-resistant metastatic state in the vast majority of patients. According to our oncogene-induced model for cancer development, senescence is a major tumor progression barrier. However, whether senescence is implicated in the progression of early-stage androgen-sensitive to highly aggressive castration-resistant prostate cancer (CRPC) remains poorly addressed. METHODS: Androgen-dependent (LNCaP) and -independent (C4-2B and PC-3) cells were treated or not with enzalutamide, an Androgen Receptor (AR) inhibitor. RNA sequencing and pathway analyses were carried out in LNCaP cells to identify potential senescence regulators upon treatment. Assessment of the invasive potential of cells and senescence status following enzalutamide treatment and/or RNAi-mediated silencing of selected targets was performed in all cell lines, complemented by bioinformatics analyses on a wide range of in vitro and in vivo datasets. Key observations were validated in LNCaP and C4-2B mouse xenografts. Senescence induction was assessed by state-of-the-art GL13 staining by immunocytochemistry and confocal microscopy. RESULTS: We demonstrate that enzalutamide treatment induces senescence in androgen-sensitive cells via reduction of the replication licensing factor CDC6. Mechanistically, we show that CDC6 downregulation is mediated through endogenous activation of the GATA2 transcription factor functioning as a CDC6 repressor. Intriguingly, GATA2 levels decrease in enzalutamide-resistant cells, leading to CDC6 stabilization accompanied by activation of Epithelial-To-Mesenchymal Transition (EMT) markers and absence of senescence. We show that CDC6 loss is sufficient to reverse oncogenic features and induce senescence regardless of treatment responsiveness, thereby identifying CDC6 as a critical determinant of prostate cancer progression. CONCLUSIONS: We identify a key GATA2-CDC6 signaling axis which is reciprocally regulated in enzalutamide-sensitive and -resistant prostate cancer environments. Upon acquired resistance, GATA2 repression leads to CDC6 stabilization, with detrimental effects in disease progression through exacerbation of EMT and abrogation of senescence. However, bypassing the GATA2-CDC6 axis by direct inhibition of CDC6 reverses oncogenic features and establishes senescence, thereby offering a therapeutic window even after acquiring resistance to therapy.


Asunto(s)
Neoplasias de la Próstata , Receptores Androgénicos , Masculino , Humanos , Animales , Ratones , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Neoplasias de la Próstata/patología , Andrógenos/farmacología , Antagonistas de Andrógenos , Factor de Transcripción GATA2/genética , Nitrilos/farmacología , Nitrilos/uso terapéutico , Antagonistas de Receptores Androgénicos/farmacología , Antagonistas de Receptores Androgénicos/uso terapéutico , Proteínas de Ciclo Celular , Línea Celular Tumoral , Resistencia a Antineoplásicos , Proteínas Nucleares/metabolismo
3.
Antioxidants (Basel) ; 12(1)2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36671032

RESUMEN

The contemporary lifestyle of the last decade has undeniably caused a tremendous increase in oxidative-stress-inducing environmental sources. This phenomenon is not only connected with the rise of ROS levels in multiple tissues but is also associated with the induction of senescence in different cell types. Several signaling pathways that are associated with the reduction in ROS levels and the regulation of the cell cycle are being activated, so that the organism can battle deleterious effects. Within this context, autophagy plays a significant role. Through autophagy, cells can maintain their homeostasis, as if it were a self-degradation process, which removes the "wounded" molecules from the cells and uses their materials as a substrate for the creation of new useful cell particles. However, the role of autophagy in senescence has both a "dark" and a "bright" side. This review is an attempt to reveal the mechanistic aspects of this dual role. Nanomedicine can play a significant role, providing materials that are able to act by either preventing ROS generation or controllably inducing it, thus functioning as potential therapeutic agents regulating the activation or inhibition of autophagy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...