Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 3052, 2023 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-37236963

RESUMEN

Maintaining or shifting between behavioral states according to context is essential for animals to implement fitness-promoting strategies. How the integration of internal state, past experience and sensory inputs orchestrates persistent multidimensional behavioral changes remains poorly understood. Here, we show that C. elegans integrates environmental temperature and food availability over different timescales to engage in persistent dwelling, scanning, global or glocal search strategies matching thermoregulatory and feeding needs. Transition between states, in each case, involves regulating multiple processes including AFD or FLP tonic sensory neurons activity, neuropeptide expression and downstream circuit responsiveness. State-specific FLP-6 or FLP-5 neuropeptide signaling acts on a distributed set of inhibitory GPCR(s) to promote scanning or glocal search, respectively, bypassing dopamine and glutamate-dependent behavioral state control. Integration of multimodal context via multisite regulation in sensory circuits might represent a conserved regulatory logic for a flexible prioritization on the valence of multiple inputs when operating persistent behavioral state transitions.


Asunto(s)
Proteínas de Caenorhabditis elegans , Neuropéptidos , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Células Receptoras Sensoriales/metabolismo , Neuropéptidos/metabolismo , Transducción de Señal
2.
Elife ; 102021 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-34766550

RESUMEN

Sensory and behavioral plasticity are essential for animals to thrive in changing environments. As key effectors of intracellular calcium signaling, Ca2+/calmodulin-dependent protein kinases (CaMKs) can bridge neural activation with the many regulatory processes needed to orchestrate sensory adaptation, including by relaying signals to the nucleus. Here, we elucidate the molecular mechanism controlling the cell activation-dependent nuclear translocation of CMK-1, the Caenorhabditis elegans ortholog of mammalian CaMKI/IV, in thermosensory neurons in vivo. We show that an intracellular Ca2+ concentration elevation is necessary and sufficient to favor CMK-1 nuclear import. The binding of Ca2+/CaM to CMK-1 increases its affinity for IMA-3 importin, causing a redistribution with a relatively slow kinetics, matching the timescale of sensory adaptation. Furthermore, we show that this mechanism enables the encoding of opposite nuclear signals in neuron types with opposite calcium-responses and that it is essential for experience-dependent behavioral plasticity and gene transcription control in vivo. Since CaMKI/IV are conserved regulators of adaptable behaviors, similar mechanisms could exist in other organisms and for other sensory modalities.


Asunto(s)
Caenorhabditis elegans/fisiología , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Células Receptoras Sensoriales/metabolismo , Adaptación Fisiológica , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Señalización del Calcio , Núcleo Celular/metabolismo , Carioferinas/metabolismo , Sensación Térmica
3.
PLoS Genet ; 16(10): e1009102, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33104696

RESUMEN

Ryanodine receptors (RyR) are essential regulators of cellular calcium homeostasis and signaling. Vertebrate genomes contain multiple RyR gene isoforms, expressed in different tissues and executing different functions. In contrast, invertebrate genomes contain a single RyR-encoding gene and it has long been proposed that different transcripts generated by alternative splicing may diversify their functions. Here, we analyze the expression and function of alternative exons in the C. elegans RyR gene unc-68. We show that specific isoform subsets are created via alternative promoters and via alternative splicing in unc-68 Divergent Region 2 (DR2), which actually corresponds to a region of high sequence variability across vertebrate isoforms. The expression of specific unc-68 alternative exons is enriched in different tissues, such as in body wall muscle, neurons and pharyngeal muscle. In order to infer the function of specific alternative promoters and alternative exons of unc-68, we selectively deleted them by CRISPR/Cas9 genome editing. We evaluated pharyngeal function, as well as locomotor function in swimming and crawling with high-content computer-assisted postural and behavioral analysis. Our data provide a comprehensive map of the pleiotropic impact of isoform-specific mutations and highlight that tissue-specific unc-68 isoforms fulfill distinct functions. As a whole, our work clarifies how the C. elegans single RyR gene unc-68 can fulfill multiple tasks through tissue-specific isoforms, and provide a solid foundation to further develop C. elegans as a model to study RyR channel functions and malfunctions.


Asunto(s)
Empalme Alternativo/genética , Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Contracción Muscular/genética , Canal Liberador de Calcio Receptor de Rianodina/genética , Animales , Animales Modificados Genéticamente/crecimiento & desarrollo , Caenorhabditis elegans/crecimiento & desarrollo , Señalización del Calcio/genética , Modelos Animales de Enfermedad , Exones , Humanos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Mutación/genética , Especificidad de Órganos/genética , Isoformas de Proteínas/genética , Rianodina/metabolismo
4.
Cell Rep ; 30(2): 397-408.e4, 2020 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-31940484

RESUMEN

Pain sensation and aversive behaviors entail the activation of nociceptor neurons, whose function is largely conserved across animals. The functional heterogeneity of nociceptors and ethical concerns are challenges for their study in mammalian models. Here, we investigate the function of a single type of genetically identified C. elegans thermonociceptor named FLP. Using calcium imaging in vivo, we demonstrate that FLP encodes thermal information in a tonic and graded manner over a wide thermal range spanning from noxious cold to noxious heat (8°C-36°C). This tonic-signaling mode allows FLP to trigger sustained behavioral changes necessary for escape behavior. Furthermore, we identify specific transient receptor potential, voltage-gated calcium, and sodium "leak" channels controlling sensory gain, thermal sensitivity, and signal kinetics, respectively, and show that the ryanodine receptor is required for long-lasting activation. Our work elucidates the task distribution among specific ion channels to achieve remarkable sensory properties in a tonic thermonociceptor in vivo.


Asunto(s)
Canales Iónicos/metabolismo , Optogenética/métodos , Sensación Térmica/fisiología , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans , Nociceptores/metabolismo , Temperatura
5.
J Neurosci ; 38(20): 4641-4654, 2018 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-29712787

RESUMEN

Animal behavior is critically dependent on the activity of neuropeptides. Reversals, one of the most conspicuous behaviors in Caenorhabditis elegans, plays an important role in determining the navigation strategy of the animal. Our experiments on hermaphrodite C. elegans show the involvement of a neuropeptide FLP-18 in modulating reversal length in these hermaphrodites. We show that FLP-18 controls the reversal length by regulating the activity of AVA interneurons through the G-protein-coupled neuropeptide receptors, NPR-4 and NPR-1. We go on to show that the site of action of these receptors is the AVA interneuron for NPR-4 and the ASE sensory neurons for NPR-1. We further show that mutants in the neuropeptide, flp-18, and its receptors show increased reversal lengths. Consistent with the behavioral data, calcium levels in the AVA neuron of freely reversing C. elegans were significantly higher and persisted for longer durations in flp-18, npr-1, npr-4, and npr-1 npr-4 genetic backgrounds compared with wild-type control animals. Finally, we show that increasing FLP-18 levels through genetic and physiological manipulations causes shorter reversal lengths. Together, our analysis suggests that the FLP-18/NPR-1/NPR-4 signaling is a pivotal point in the regulation of reversal length under varied genetic and environmental conditions.SIGNIFICANCE STATEMENT In this study, we elucidate the circuit and molecular machinery required for normal reversal behavior in hermaphrodite Caenorhabditis elegans We delineate the circuit and the neuropeptide receptors required for maintaining reversal length in C. elegans Our work sheds light on the importance of a single neuropeptide, FLP-18, and how change in levels in this one peptide could allow the animal to change the length of its reversal, thereby modulating how the C. elegans explores its environment. We also go on to show that FLP-18 functions to maintain reversal length through the neuropeptide receptors NPR-4 and NPR-1. Our study will allow for a better understanding of the complete repertoire of behaviors shown by freely moving animals as they explore their environment.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/fisiología , Neuropéptidos/fisiología , Receptores de Neuropéptido Y/fisiología , Receptores de Neuropéptido/fisiología , Animales , Animales Modificados Genéticamente , Conducta Animal , Proteínas de Caenorhabditis elegans/genética , Calcio/metabolismo , Interneuronas/fisiología , Locomoción/fisiología , Mutación/genética , Mutación/fisiología , Neuropéptidos/genética , Optogenética , Receptores de Neuropéptido/genética , Receptores de Neuropéptido Y/genética , Células Receptoras Sensoriales , Transducción de Señal/genética , Transducción de Señal/fisiología , Inanición/genética , Inanición/psicología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA