Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Semin Musculoskelet Radiol ; 27(4): 397-410, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37748463

RESUMEN

Bone microarchitecture has several clinical implications over and above estimating bone strength. Computed tomography (CT) analysis mainly uses high-resolution peripheral quantitative CT and micro-CT, research imaging techniques, most often limited to peripheral skeleton assessment. Ultra-high-resolution (UHR) CT and photon-counting detector CT, two commercially available techniques, provide images that can approach the spatial resolution of the trabeculae, bringing bone microarchitecture analysis into clinical practice and improving depiction of bone vascularization, tumor matrix, and cortical and periosteal bone. This review presents bone microarchitecture anatomy, principles of analysis, reference measurements, and an update on the performance and potential clinical applications of these new CT techniques. We also share our clinical experience and technical considerations using an UHR-CT device.


Asunto(s)
Hueso Esponjoso , Tomografía Computarizada por Rayos X , Humanos , Radiofármacos
2.
J Neuroradiol ; 50(3): 333-340, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36216294

RESUMEN

PURPOSE: The aim of this study is to evaluate the image quality and diagnostic performance of angiographic images reconstructed from whole-brain CT perfusion (CTP) using temporal averaging compared to CT angiography (CTA) for the detection of vasospasm. MATERIALS AND METHODS: 39 CT studies in 28 consecutive patients who underwent brain CTA with CTP for suspected vasospasm between September 2020 and May 2021 were retrospectively evaluated. The image quality of these two vascular imaging techniques was assessed either quantitatively (image noise, vascular enhancement, signal-to-noise (SNR) and contrast-to-noise (CNR) ratios,) and qualitatively (4 criteria assessed on a 5-point scale). Intra and interobserver agreements and a diagnostic confidence score on the diagnosis of vasospasm were measured. Radiation dose parameters (volume CT dose index (CTDIvol) and dose-length product (DLP)) were recorded. RESULTS: Both SNR and CNR were significantly higher with temporal averaging compared to CTA, increasing by 104% and 113%, respectively (p<0.001). The qualitative assessment found no significant difference in overall image quality between temporal averaging (4.33 ± 0.48) and brain CTA (4.19 ± 0.52) (p = 0.12).There was a significant improvement in intravascular noise and arterial contrast enhancement with temporal averaging. The evaluation of intra and interobserver agreements showed a robust concordance in the diagnosis of vasospasm between the two techniques. CONCLUSIONS: Temporal averaging appeared as a feasible and reliable imaging technique for the detection of vasospasm. The use of temporal averaging, replacing brain CTA, could represent a new strategy of radiation and contrast material doses reduction in these patients.


Asunto(s)
Encéfalo , Angiografía por Tomografía Computarizada , Humanos , Estudios Retrospectivos , Dosis de Radiación , Angiografía por Tomografía Computarizada/métodos , Encéfalo/diagnóstico por imagen , Perfusión , Interpretación de Imagen Radiográfica Asistida por Computador
3.
Diagnostics (Basel) ; 12(5)2022 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-35626442

RESUMEN

Objective: To compare the image quality of computed tomography angiography of the supra-aortic arteries (CTSA) at different tube voltages in low doses settings with deep learning-based image reconstruction (DLR) vs. hybrid iterative reconstruction (H-IR). Methods: We retrospectively reviewed 102 patients who underwent CTSA systematically reconstructed with both DLR and H-IR. We assessed the image quality both quantitatively and qualitatively at 11 arterial segmental levels and 3 regional levels. Radiation-dose parameters were recorded and the effective dose was calculated. Eighty-six patients were eligible for analysis Of these patients, 27 were imaged with 120 kVp, 30 with 100 kVp, and 29 with 80 kVp. Results: The effective dose in 120 kVp, 100 kVp and 80 kVp was 1.5 ± 0.4 mSv, 1.1 ± 0.3 mSv and 0.68 ± 0.1 mSv, respectively (p < 0.01). Comparing 80 kVp + DLR vs. 120 and 100 kVp + H-IR CT scans, the mean overall arterial attenuation was about 64% and 34% higher (625.9 ± 118.5 HU vs. 382.3 ± 98.6 HU and 468 ± 118.5 HU; p < 0.01) without a significant difference in terms of image noise (17.7 ± 4.9 HU vs. 17.5 ± 5.2; p = 0.7 and 18.1 ± 5.4; p = 0.3) and signal-to-ratio increased by 59% and 33%, respectively (37.9 ± 12.3 vs. 23.8 ± 9.7 and 28.4 ± 12.5). This protocol also provided superior image quality in terms of qualitative parameters, compared to standard-kVp protocols with H-IR. Highest subjective image-quality grades for vascular segments close to the aorta were obtained with the 100 kVp + DLR protocol. Conclusions: DLR significantly reduced image noise and improved the overall image quality of CTSA with both low and standard tube voltages and at all vascular segments. CT that was acquired with 80 kVp and reconstructed with DLR yielded better overall image quality compared to higher kVp values with H-IR, while reducing the radiation dose by half, but it has limitations for arteries that are close to the aortic arch.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA