Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Diagnostics (Basel) ; 14(14)2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39061609

RESUMEN

Androgens have long been recognized as oncogenic agents. They can induce both benign and malignant hepatocellular neoplasms, including hepatocellular adenoma (HCA) and hepatocellular carcinoma, though the underlying mechanisms remain unclear. Androgen-induced liver tumors are most often solitary and clinically silent. Herein, we reported an androgen-induced HCA complicated by spontaneous rupture. The patient was a 24-year-old male presenting with fatigue, diminished libido, radiology-diagnosed hepatocellular adenomatosis for 3 years, and sudden-onset, severe, sharp, constant abdominal pain for one day. He used Aveed (testosterone undecanoate injection) from age 17 and completely stopped one year before his presentation. A physical exam showed touch pain and voluntary guarding in the right upper quadrant of the abdomen. An abdominal CT angiogram demonstrated multiple probable HCAs, with active hemorrhage of the largest one (6.6 × 6.2 × 5.1 cm) accompanied by large-volume hemoperitoneum. After being stabilized by a massive transfusion protocol and interventional embolization, he underwent a percutaneous liver core biopsy. The biopsy specimen displayed atypical hepatocytes forming dense cords and pseudoglands. The lesional cells diffusely stained ß-catenin in nuclei and glutamine synthetase in cytoplasm. Compared to normal hepatocytes from control tissue, the tumor cells were positive for nuclear AR (androgen receptor) expression but had no increased EZH2 (Enhancer of Zeste 2 Polycomb Repressive Complex 2 Subunit) protein expression. The case indicated that androgen-induced hepatocellular neoplasms should be included in the differential diagnosis of acute abdomen.

2.
PLoS One ; 19(4): e0301824, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38578745

RESUMEN

Biliary atresia is a neonatal disease characterized by damage, inflammation, and fibrosis of the liver and bile ducts and by abnormal bile metabolism. It likely results from a prenatal environmental exposure that spares the mother and affects the fetus. Our aim was to develop a model of fetal injury by exposing pregnant mice to low-dose biliatresone, a plant toxin implicated in biliary atresia in livestock, and then to determine whether there was a hepatobiliary phenotype in their pups. Pregnant mice were treated orally with 15 mg/kg/d biliatresone for 2 days. Histology of the liver and bile ducts, serum bile acids, and liver immune cells of pups from treated mothers were analyzed at P5 and P21. Pups had no evidence of histological liver or bile duct injury or fibrosis at either timepoint. In addition, growth was normal. However, serum levels of glycocholic acid were elevated at P5, suggesting altered bile metabolism, and the serum bile acid profile became increasingly abnormal through P21, with enhanced glycine conjugation of bile acids. There was also immune cell activation observed in the liver at P21. These results suggest that prenatal exposure to low doses of an environmental toxin can cause subclinical disease including liver inflammation and aberrant bile metabolism even in the absence of histological changes. This finding suggests a wide potential spectrum of disease after fetal biliary injury.


Asunto(s)
Benzodioxoles , Atresia Biliar , Enfermedades de la Vesícula Biliar , Embarazo , Femenino , Animales , Ratones , Atresia Biliar/metabolismo , Hígado/metabolismo , Conductos Biliares/patología , Enfermedades de la Vesícula Biliar/complicaciones , Inflamación/patología , Fibrosis , Ácidos y Sales Biliares
4.
JHEP Rep ; 5(9): 100760, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37534230

RESUMEN

Background & Aims: Glisson's capsule is the interstitial connective tissue that surrounds the liver. As part of its normal physiology, it withstands significant daily changes in liver size. The pathophysiology of the capsule in disease is not well understood. The aim of this study was to characterise the changes in capsule matrix, cellular composition, and mechanical properties that occur in liver disease and to determine whether these correlate with disease severity or aetiology. Methods: Samples from ten control patients, and six with steatosis, seven with moderate fibrosis, and 37 with cirrhosis were collected from autopsies, intraoperative biopsies, and liver explants. Matrix proteins and cell markers were assessed by staining and second harmonic generation imaging. Mechanical tensile testing was performed on a test frame. Results: Capsule thickness was significantly increased in cirrhotic samples compared with normal controls irrespective of disease aetiology (70.12 ± 14.16 µm and 231.58 ± 21.82 µm, respectively), whereas steatosis and moderate fibrosis had no effect on thickness (90.91 ± 11.40 µm). Changes in cirrhosis included an increase in cell number (fibroblasts, vascular cells, infiltrating immune cells, and biliary epithelial cells). Key matrix components (collagens 1 and 3, hyaluronan, versican, and elastin) were all deposited in the lower capsule, although only the relative amounts per area of hyaluronan and versican were increased. Organisational features, including crimping and alignment of collagen fibres, were also altered in cirrhosis. Unexpectedly, capsules from cirrhotic livers had decreased resistance to loading compared with controls. Conclusions: The liver capsule, similar to the parenchyma, is an active site of disease, demonstrating changes in matrix and cell composition as well as mechanical properties. Impact and implications: We assessed the changes in composition and response to stretching of the liver outer sheath, the capsule, in human liver disease. We found an increase in key structural components and numbers of cells as well as a change in matrix organisation of the capsule during the later stages of disease. This allows the diseased capsule to stretch more under any given force, suggesting that it is less stiff than healthy tissue.

5.
Clin Anat ; 36(6): 887-895, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36942935

RESUMEN

Franklin Mall was one of the foremost scientists of the turn of the 19th century, an exemplary mentor as well as researcher, and his revolutionary contributions are still relevant today. Mall's early training in Leipzig with Wilhelm His and Carl Ludwig provided him with an unusual perspective on the integration of anatomy and physiology, and his interest in the links between structure and function guided the work he carried out after joining the faculty of the new Johns Hopkins University School of Medicine. Mall carried out innovative studies on the one hand using dye injection to trace blood and lymphatic supplies to different organs and on the other hand using "putrefaction" to digest tissues and study the organization of the reticular space, demonstrating that it was the underlying source of support for all the organs. These two studies of Mall's, carried out independently, provide the basis for modern studies integrating the understanding of fascia and interstitial spaces.


Asunto(s)
Vasos Linfáticos , Médicos , Humanos , Masculino , Historia del Siglo XIX , Historia del Siglo XX , Fascia , Universidades , Docentes
6.
Commun Biol ; 6(1): 280, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36932214

RESUMEN

Atherosclerosis evolves through dysregulated lipid metabolism interwoven with exaggerated inflammation. Previous work implicating the receptor for advanced glycation end products (RAGE) in atherosclerosis prompted us to explore if Diaphanous 1 (DIAPH1), which binds to the RAGE cytoplasmic domain and is important for RAGE signaling, contributes to these processes. We intercrossed atherosclerosis-prone Ldlr-/- mice with mice devoid of Diaph1 and fed them Western diet for 16 weeks. Compared to male Ldlr-/- mice, male Ldlr-/- Diaph1-/- mice displayed significantly less atherosclerosis, in parallel with lower plasma concentrations of cholesterol and triglycerides. Female Ldlr-/- Diaph1-/- mice displayed significantly less atherosclerosis compared to Ldlr-/- mice and demonstrated lower plasma concentrations of cholesterol, but not plasma triglycerides. Deletion of Diaph1 attenuated expression of genes regulating hepatic lipid metabolism, Acaca, Acacb, Gpat2, Lpin1, Lpin2 and Fasn, without effect on mRNA expression of upstream transcription factors Srebf1, Srebf2 or Mxlipl in male mice. We traced DIAPH1-dependent mechanisms to nuclear translocation of SREBP1 in a manner independent of carbohydrate- or insulin-regulated cues but, at least in part, through the actin cytoskeleton. This work unveils new regulators of atherosclerosis and lipid metabolism through DIAPH1.


Asunto(s)
Aterosclerosis , Metabolismo de los Lípidos , Animales , Femenino , Masculino , Ratones , Aterosclerosis/genética , Aterosclerosis/metabolismo , Colesterol/metabolismo , Metabolismo de los Lípidos/genética , Hígado/metabolismo , Fosfatidato Fosfatasa/metabolismo , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Triglicéridos/metabolismo , Forminas/genética , Ratones Noqueados
7.
Cell Rep ; 40(11): 111321, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-36103835

RESUMEN

Advanced non-alcoholic fatty liver disease (NAFLD) is a rapidly emerging global health problem associated with pre-disposing genetic polymorphisms, most strikingly an isoleucine to methionine substitution in patatin-like phospholipase domain-containing protein 3 (PNPLA3-I148M). Here, we study how human hepatocytes with PNPLA3 148I and 148M variants engrafted in the livers of broadly immunodeficient chimeric mice respond to hypercaloric diets. As early as four weeks, mice developed dyslipidemia, impaired glucose tolerance, and steatosis with ballooning degeneration selectively in the human graft, followed by pericellular fibrosis after eight weeks of hypercaloric feeding. Hepatocytes with the PNPLA3-148M variant, either from a homozygous 148M donor or overexpressed in a 148I donor background, developed microvesicular and severe steatosis with frequent ballooning degeneration, resulting in more active steatohepatitis than 148I hepatocytes. We conclude that PNPLA3-148M in human hepatocytes exacerbates NAFLD. These models will facilitate mechanistic studies into human genetic variant contributions to advanced fatty liver diseases.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Aciltransferasas , Animales , Hepatocitos/metabolismo , Humanos , Lipasa/genética , Lipasa/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Enfermedad del Hígado Graso no Alcohólico/genética , Fosfolipasas A2 Calcio-Independiente
8.
Cancers (Basel) ; 14(15)2022 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-35954333

RESUMEN

Hepatocellular carcinoma (HCC), a major global contributor of cancer death, usually arises in a background of chronic liver disease, as a result of molecular changes that deregulate important signal transduction pathways. Recent studies have shown that certain molecular changes of hepatocarcinogenesis are associated with clinicopathologic features and prognosis, suggesting that subclassification of HCC is practically useful. On the other hand, subclassification of hepatocellular adenomas (HCAs), a heterogenous group of neoplasms, has been well established on the basis of genotype-phenotype correlations. Histologic examination, aided by immunohistochemistry, is the gold standard for the diagnosis and subclassification of HCA and HCC, while clinicopathologic correlation is essential for best patient management. Advances in clinico-radio-pathologic correlation have introduced a new approach for the diagnostic assessment of lesions arising in advanced chronic liver disease by imaging (LI-RADS). The rapid expansion of knowledge concerning the molecular pathogenesis of HCC is now starting to produce new therapeutic approaches through precision oncology. This review summarizes the etiology and pathogenesis of HCA and HCC, provides practical information for their histologic diagnosis (including an algorithmic approach), and addresses a variety of frequently asked questions regarding the diagnosis and practical implications of these neoplasms.

9.
Neurobiol Dis ; 170: 105776, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35643187

RESUMEN

Cerebrospinal fluid (CSF), predominantly produced in the ventricles and circulating throughout the brain and spinal cord, is a key protective mechanism of the central nervous system (CNS). Physical cushioning, nutrient delivery, metabolic waste, including protein clearance, are key functions of the CSF in humans. CSF volume and flow dynamics regulate intracranial pressure and are fundamental to diagnosing disorders including normal pressure hydrocephalus, intracranial hypotension, CSF leaks, and possibly Alzheimer's disease (AD). The ability of CSF to clear normal and pathological proteins, such as amyloid-beta (Aß), tau, alpha synuclein and others, implicates it production, circulation, and composition, in many neuropathologies. Several neuroimaging modalities have been developed to probe CSF fluid dynamics and better relate CSF volume and flow to anatomy and clinical conditions. Approaches include 2-photon microscopic techniques, MRI (tracer-based, gadolinium contrast, endogenous phase-contrast), and dynamic positron emission tomography (PET) using existing approved radiotracers. Here, we discuss CSF flow neuroimaging, from animal models to recent clinical-research advances, summarizing current endeavors to quantify and map CSF flow with implications towards pathophysiology, new biomarkers, and treatments of neurological diseases.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Enfermedad de Alzheimer/diagnóstico , Péptidos beta-Amiloides/líquido cefalorraquídeo , Biomarcadores/líquido cefalorraquídeo , Humanos , Enfermedades Neurodegenerativas/diagnóstico por imagen , Neuroimagen , Fragmentos de Péptidos/líquido cefalorraquídeo , Tomografía de Emisión de Positrones , Proteínas tau/líquido cefalorraquídeo
10.
Front Immunol ; 13: 811430, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35250984

RESUMEN

Despite significant research efforts, treatment options for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remain limited. This is due in part to a lack of therapeutics that increase host defense to the virus. Replication of SARS-CoV-2 in lung tissue is associated with marked infiltration of macrophages and activation of innate immune inflammatory responses that amplify tissue injury. Antagonists of the androgen (AR) and glucocorticoid (GR) receptors have shown efficacy in models of COVID-19 and in clinical studies because the cell surface proteins required for viral entry, angiotensin converting enzyme 2 (ACE2) and the transmembrane protease, serine 2 (TMPRSS2), are transcriptionally regulated by these receptors. We postulated that the GR and AR modulator, PT150, would reduce infectivity of SARS-CoV-2 and prevent inflammatory lung injury in the Syrian golden hamster model of COVID-19 by down-regulating expression of critical genes regulated through these receptors. Animals were infected intranasally with 2.5 × 104 TCID50/ml equivalents of SARS-CoV-2 (strain 2019-nCoV/USA-WA1/2020) and PT150 was administered by oral gavage at 30 and 100 mg/Kg/day for a total of 7 days. Animals were examined at 3, 5 and 7 days post-infection (DPI) for lung histopathology, viral load and production of proteins regulating the progression of SARS-CoV-2 infection. Results indicated that oral administration of PT150 caused a dose-dependent decrease in replication of SARS-CoV-2 in lung, as well as in expression of ACE2 and TMPRSS2. Lung hypercellularity and infiltration of macrophages and CD4+ T-cells were dramatically decreased in PT150-treated animals, as was tissue damage and expression of IL-6. Molecular docking studies suggest that PT150 binds to the co-activator interface of the ligand-binding domain of both AR and GR, thereby acting as an allosteric modulator and transcriptional repressor of these receptors. Phylogenetic analysis of AR and GR revealed a high degree of sequence identity maintained across multiple species, including humans, suggesting that the mechanism of action and therapeutic efficacy observed in Syrian hamsters would likely be predictive of positive outcomes in patients. PT150 is therefore a strong candidate for further clinical development for the treatment of COVID-19 across variants of SARS-CoV-2.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Glucocorticoides/metabolismo , Inmunidad Innata/efectos de los fármacos , Inflamación/tratamiento farmacológico , Receptores Androgénicos/metabolismo , Internalización del Virus/efectos de los fármacos , Animales , COVID-19/metabolismo , Modelos Animales de Enfermedad , Femenino , Inflamación/metabolismo , Inflamación/virología , Pulmón/virología , Masculino , Mesocricetus , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/metabolismo , Serina Endopeptidasas/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Carga Viral/efectos de los fármacos
11.
J Clin Invest ; 132(8)2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35175938

RESUMEN

The gut microbiome shapes local and systemic immunity. The liver is presumed to be a protected sterile site. As such, a hepatic microbiome has not been examined. Here, we showed a liver microbiome in mice and humans that is distinct from that of the gut and is enriched in Proteobacteria. It undergoes dynamic alterations with age and is influenced by the environment and host physiology. Fecal microbial transfer experiments revealed that the liver microbiome is populated from the gut in a highly selective manner. Hepatic immunity is dependent on the microbiome, specifically the bacteroidetes species. Targeting bacteroidetes with oral antibiotics reduced hepatic immune cells by approximately 90%, prevented antigen-presenting cell (APC) maturation, and mitigated adaptive immunity. Mechanistically, our findings are consistent with presentation of bacteroidetes-derived glycosphingolipids to NKT cells promoting CCL5 signaling, which drives hepatic leukocyte expansion and activation, among other possible host-microbe interactions. Collectively, we reveal a microbial/glycosphingolipid/NKT/CCL5 axis that underlies hepatic immunity.


Asunto(s)
Microbioma Gastrointestinal , Células T Asesinas Naturales , Inmunidad Adaptativa , Animales , Heces/microbiología , Hígado , Ratones
12.
Clin Liver Dis (Hoboken) ; 18(Suppl 1): 76-92, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34745585

RESUMEN

Content available: Author Interview and Audio Recording.

13.
Radiographics ; 41(6): 1611-1631, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34597222

RESUMEN

Hepatocellular carcinoma (HCC) is a malignancy with variable biologic aggressiveness based on the tumor grade, presence or absence of vascular invasion, and pathologic and molecular classification. Knowledge and understanding of the prognostic implications of different pathologic and molecular phenotypes of HCC are emerging, with therapeutics that promise to provide improved outcomes in what otherwise remains a lethal cancer. Imaging has a central role in diagnosis of HCC. However, to date, the imaging algorithms do not incorporate prognostic features or subclassification of HCC according to its biologic aggressiveness. Emerging data suggest that some imaging features and further radiologic, pathologic, or radiologic-molecular phenotypes may allow prediction of the prognosis of patients with HCC. An invited commentary by Bashir is available online. Online supplemental material is available for this article. ©RSNA, 2021.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/diagnóstico por imagen , Humanos , Neoplasias Hepáticas/diagnóstico por imagen , Imagen por Resonancia Magnética , Pronóstico , Estudios Retrospectivos
14.
Magn Reson Imaging Clin N Am ; 29(3): 359-374, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34243923

RESUMEN

In the background of chronic liver disease, hepatocellular carcinoma develops via a complex, multistep process called hepatocarcinogenesis. This article reviews the causes contributing to the process. Emphasis is made on the imaging manifestations of the pathologic changes seen at many stages of hepatocarcinogenesis, from regenerative nodules to dysplastic nodules and then to hepatocellular carcinoma.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Radiología , Carcinoma Hepatocelular/diagnóstico por imagen , Humanos , Neoplasias Hepáticas/diagnóstico por imagen , Imagen por Resonancia Magnética , Radiografía
15.
Am J Gastroenterol ; 116(7): 1414-1425, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33993134

RESUMEN

INTRODUCTION: Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 virus, is a predominantly respiratory tract infection with the capacity to affect multiple organ systems. Abnormal liver tests, mainly transaminase elevations, have been reported in hospitalized patients. We describe a syndrome of cholangiopathy in patients recovering from severe COVID-19 characterized by marked elevation in serum alkaline phosphatase (ALP) accompanied by evidence of bile duct injury on imaging. METHODS: We conducted a retrospective study of COVID-19 patients admitted to our institution from March 1, 2020, to August 15, 2020, on whom the hepatology service was consulted for abnormal liver tests. Bile duct injury was identified by abnormal liver tests with serum ALP > 3x upper limit of normal and abnormal findings on magnetic resonance cholangiopacreatography. Clinical, laboratory, radiological, and histological findings were recorded in a Research Electronic Data Capture database. RESULTS: Twelve patients were identified, 11 men and 1 woman, with a mean age of 58 years. Mean time from COVID-19 diagnosis to diagnosis of cholangiopathy was 118 days. Peak median serum alanine aminotransferase was 661 U/L and peak median serum ALP was 1855 U/L. Marked elevations of erythrocyte sedimentation rate, C-reactive protein, and D-dimers were common. Magnetic resonance cholangiopacreatography findings included beading of intrahepatic ducts (11/12, 92%), bile duct wall thickening with enhancement (7/12, 58%), and peribiliary diffusion high signal (10/12, 83%). Liver biopsy in 4 patients showed acute and/or chronic large duct obstruction without clear bile duct loss. Progressive biliary tract damage has been demonstrated radiographically. Five patients were referred for consideration of liver transplantation after experiencing persistent jaundice, hepatic insufficiency, and/or recurrent bacterial cholangitis. One patient underwent successful living donor liver transplantation. DISCUSSION: Cholangiopathy is a late complication of severe COVID-19 with the potential for progressive biliary injury and liver failure. Further studies are required to understand pathogenesis, natural history, and therapeutic interventions.


Asunto(s)
COVID-19/complicaciones , Colangitis Esclerosante/epidemiología , Enfermedad Hepática en Estado Terminal/epidemiología , Ictericia/epidemiología , Adulto , Anciano , Alanina Transaminasa/sangre , Fosfatasa Alcalina/sangre , Conductos Biliares/diagnóstico por imagen , Conductos Biliares/inmunología , Conductos Biliares/patología , Biopsia , COVID-19/diagnóstico , COVID-19/inmunología , COVID-19/virología , Prueba de Ácido Nucleico para COVID-19 , Pancreatocolangiografía por Resonancia Magnética , Colangitis Esclerosante/diagnóstico , Colangitis Esclerosante/inmunología , Colangitis Esclerosante/terapia , Progresión de la Enfermedad , Enfermedad Hepática en Estado Terminal/diagnóstico , Enfermedad Hepática en Estado Terminal/inmunología , Enfermedad Hepática en Estado Terminal/cirugía , Femenino , Humanos , Ictericia/diagnóstico , Ictericia/inmunología , Ictericia/terapia , Pruebas de Función Hepática , Trasplante de Hígado , Masculino , Persona de Mediana Edad , Pronóstico , Estudios Retrospectivos , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , Índice de Severidad de la Enfermedad
16.
Case Rep Gastroenterol ; 15(1): 408-417, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33976619

RESUMEN

Gastrointestinal (GI) symptoms of SARS-CoV-2/COVID-19 in the form of anorexia, nausea, vomiting, abdominal pain and diarrhea are usually preceded by respiratory manifestations and are associated with a poor prognosis. Hematochezia is an uncommon clinical presentation of COVID-19, and we hypothesize that older patients with significant comorbidities (obesity and cardiovascular) and prolonged hospitalization are susceptible to ischemic injury to the bowel. We reviewed the clinical course, key laboratory data including acute-phase reactants, and drug/medication history in 2 elderly male patients admitted for COVID-19 respiratory failure. Both patients had a complicated clinical course and suffered from hematochezia, acute blood loss, and anemia which led to hemodynamic instability requiring blood transfusion around day 40 of their hospitalization. Colonoscopic impressions were correlated with the histopathological findings in the colonic biopsies that included changes compatible with ischemia and nonspecific acute inflammation, edema, and increased eosinophils in the lamina propria. Both patients were hemodynamically stable, on prophylactic anticoagulants, multiple antibiotics, and antifungal agents due to respiratory infections at the time of lower GI bleeding. Hematochezia resolved spontaneously with supportive care. Both patients eventually recovered and were discharged. Elderly patients with significant comorbid conditions are uniquely at risk for ischemic injury to the bowel. This case report highlights hematochezia as an uncommon GI manifestation of spectrum of COVID-19 complications. The causes of bleeding in these COVID-19 associated cases are likely multifactorial and can be attributed to concomitant etiologies based on their age, multiple comorbid conditions, prolonged hospitalization compounded by lung injury, and hypoxia precipitated by the virus. We hypothesize that rather than a direct viral cytopathic effect, ischemia and hypoperfusion may be unleashed due to the cytokine storm orchestrated by the virus that leads to abnormal coagulation profile. Additional factors that may contribute to ischemic injury are prophylactic use of anticoagulants and polypharmacy. There were no other causes to explain the brisk lower GI bleeding. Presentation of hematochezia was followed by hemodynamic instability that may further increase the mortality and morbidity of COVID-19 patients, and prompt consultation and management by gastroenterology is therefore warranted.

17.
Commun Biol ; 4(1): 436, 2021 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-33790388

RESUMEN

Bodies have continuous reticular networks, comprising collagens, elastin, glycosaminoglycans, and other extracellular matrix components, through all tissues and organs. Fibrous coverings of nerves and blood vessels create structural continuity beyond organ boundaries. We recently validated fluid flow through human fibrous tissues, though whether these interstitial spaces are continuous through the body or discontinuous, confined within individual organs, remains unclear. Here we show evidence for continuity of interstitial spaces using two approaches. Non-biological particles (tattoo pigment, colloidal silver) were tracked within colon and skin interstitial spaces and into adjacent fascia. Hyaluronic acid, a macromolecular component of interstitial spaces, was also visualized. Both techniques demonstrate interstitial continuity within and between organs including within perineurium and vascular adventitia traversing organs and the spaces between them. We suggest that there is a body-wide network of fluid-filled interstitial spaces that has significant implications for molecular signaling, cell trafficking, and the spread of malignant and infectious disease.


Asunto(s)
Espacio Extracelular/metabolismo , Matriz Extracelular/metabolismo , Humanos
18.
Front Physiol ; 12: 769948, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35058794

RESUMEN

The human brain functions at the center of a network of systems aimed at providing a structural and immunological layer of protection. The cerebrospinal fluid (CSF) maintains a physiological homeostasis that is of paramount importance to proper neurological activity. CSF is largely produced in the choroid plexus where it is continuous with the brain extracellular fluid and circulates through the ventricles. CSF movement through the central nervous system has been extensively explored. Across numerous animal species, the involvement of various drainage pathways in CSF, including arachnoid granulations, cranial nerves, perivascular pathways, and meningeal lymphatics, has been studied. Among these, there is a proposed CSF clearance route spanning the olfactory nerve and exiting the brain at the cribriform plate and entering lymphatics. While this pathway has been demonstrated in multiple animal species, evidence of a similar CSF egress mechanism involving the nasal cavity in humans remains poorly consolidated. This review will synthesize contemporary evidence surrounding CSF clearance at the nose-brain interface, examining across species this anatomical pathway, and its possible significance to human neurodegenerative disease. Our discussion of a bidirectional nasal pathway includes examination of the immune surveillance in the olfactory region protecting the brain. Overall, we expect that an expanded discussion of the brain-nose pathway and interactions with the environment will contribute to an improved understanding of neurodegenerative and infectious diseases, and potentially to novel prevention and treatment considerations.

19.
Cell Cycle ; 19(24): 3632-3638, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33305659

RESUMEN

PT150 is a clinical-stage molecule, taken orally, with a strong safety profile having completed Phase 1 and Phase 2 clinical trials for its original use as an antidepressant. It has an active IND for COVID-19. Antiviral activities have been found for PT150 and other members of its class in a variety of virus families; thus, it was now tested against SARS-CoV-2 in human bronchial epithelial lining cells and showed effective 90% inhibitory antiviral concentration (EC90) of 5.55 µM. PT150 is a member of an extended platform of novel glucocorticoid receptor (GR) and androgen receptor (AR) modulating molecules. In vivo, their predominant net effect is one of systemic glucocorticoid antagonism, but they also show direct downregulation of AR and minor GR agonism at the cellular level. We hypothesize that anti-SARS-CoV-2 activity depends in part on this AR downregulation through diminished TMPRSS2 expression and modulation of ACE2 activity. Given that hypercortisolemia is now suggested to be a significant co-factor for COVID-19 progression, we also postulate an additive role for its potent immunomodulatory effects through systemic antagonism of cortisol.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Receptores Androgénicos/metabolismo , Receptores de Glucocorticoides/metabolismo , SARS-CoV-2/efectos de los fármacos , Células Epiteliales Alveolares/efectos de los fármacos , Células Epiteliales Alveolares/virología , Enzima Convertidora de Angiotensina 2/metabolismo , Antivirales/uso terapéutico , Línea Celular , Progresión de la Enfermedad , Regulación hacia Abajo , Glucocorticoides/antagonistas & inhibidores , Glucocorticoides/metabolismo , Humanos , Hidrocortisona/antagonistas & inhibidores , Factores Inmunológicos/farmacología , Factores Inmunológicos/uso terapéutico , Coronavirus del Síndrome Respiratorio de Oriente Medio/efectos de los fármacos , Receptores de Glucocorticoides/agonistas , Serina Endopeptidasas/metabolismo
20.
J Histotechnol ; 43(4): 163-173, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32998669

RESUMEN

Multiplexed immunohistochemical techniques give insight into contextual cellular relationships by offering the ability to collect cell-specific data with spatial information from formalin-fixed, paraffin-embedded tissue sections. We established an automated sequential elution-stripping multiplex immunohistochemical assay to address two controversial scientific questions in the field of hepatopathology: 1) whether epithelial-to-mesenchymal transition or mesenchymal-to-epithelial transition occurs during liver injury and repair of a chronic liver disease and 2) if there is a stromal:epithelial relationship along the canals of Hering that would support the concept of this biliary structure being a stem/progenitor cell niche. Our 4-plex assay includes both epithelial and mesenchymal clinical immunohistochemical markers and was performed on clinical human liver specimens in patients with primary biliary cholangitis. The assay demonstrated that in each specimen, co-expression of epithelial and mesenchymal markers was observed in extraportal cholangiocytes. In regard to possible mesenchymal components in a stem cell niche, 82.3% ± 5.5% of extraportal cholangiocytes were intimately associated with a vimentin-positive cell. Co-expression of epithelial and mesenchymal markers by extraportal cholangiocytes is evidence for epithelial to mesenchymal transition in primary biliary cholangitis. Vimentin-positive stromal cells are frequently juxtaposed to extraportal cholangiocytes, supporting an epithelial:mesenchymal relationship within the hepatobiliary stem cell niche. Our automated sequential elution-stripping multiplex immunohistochemical assay is a cost-effective multiplexing technique that can be readily applied to a small series of clinical pathology samples in order to answer scientific questions involving cell:cell relationships and cellular antibody expression.


Asunto(s)
Células Epiteliales/metabolismo , Queratina-19/metabolismo , Cirrosis Hepática Biliar/inmunología , Nicho de Células Madre/fisiología , Sistema Biliar/metabolismo , Biomarcadores/metabolismo , Transición Epitelial-Mesenquimal/fisiología , Humanos , Inmunohistoquímica/métodos , Hígado/citología , Vimentina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...