Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(15)2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-35955828

RESUMEN

A coiled coil is a structural motif in proteins that consists of at least two α-helices wound around each other. For structural stabilization, these α-helices form interhelical contacts via their amino acid side chains. However, there are restrictions as to the distances along the amino acid sequence at which those contacts occur. As the spatial period of the α-helix is 3.6, the most frequent distances between hydrophobic contacts are 3, 4, and 7. Up to now, the multitude of possible decompositions of α-helices participating in coiled coils at these distances has not been explored systematically. Here, we present an algorithm that computes all non-redundant decompositions of sequence periods of hydrophobic amino acids into distances of 3, 4, and 7. Further, we examine which decompositions can be found in nature by analyzing the available data and taking a closer look at correlations between the properties of the coiled coil and its decomposition. We find that the availability of decompositions allowing for coiled-coil formation without putting too much strain on the α-helix geometry follows an oscillatory pattern in respect of period length. Our algorithm supplies the basis for exploring the possible decompositions of coiled coils of any period length.


Asunto(s)
Biología Computacional , Proteínas , Secuencia de Aminoácidos , Dominios Proteicos , Estructura Secundaria de Proteína , Proteínas/química
2.
R Soc Open Sci ; 9(5): 211553, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35620008

RESUMEN

Iron-reducing and iron-oxidizing bacteria are of interest in a variety of environmental and industrial applications. Such bacteria often co-occur at oxic-anoxic gradients in aquatic and terrestrial habitats. In this paper, we present the first computational agent-based model of microbial iron cycling, between the anaerobic ferric iron (Fe3+)-reducing bacteria Shewanella spp. and the microaerophilic ferrous iron (Fe2+)-oxidizing bacteria Sideroxydans spp. By including the key processes of reduction/oxidation, movement, adhesion, Fe2+-equilibration and nanoparticle formation, we derive a core model which enables hypothesis testing and prediction for different environmental conditions including temporal cycles of oxic and anoxic conditions. We compared (i) combinations of different Fe3+-reducing/Fe2+-oxidizing modes of action of the bacteria and (ii) system behaviour for different pH values. We predicted that the beneficial effect of a high number of iron-nanoparticles on the total Fe3+ reduction rate of the system is not only due to the faster reduction of these iron-nanoparticles, but also to the nanoparticles' additional capacity to bind Fe2+ on their surfaces. Efficient iron-nanoparticle reduction is confined to pH around 6, being twice as high than at pH 7, whereas at pH 5 negligible reduction takes place. Furthermore, in accordance with experimental evidence our model showed that shorter oxic/anoxic periods exhibit a faster increase of total Fe3+ reduction rate than longer periods.

3.
Sci Rep ; 10(1): 15321, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32948819

RESUMEN

The classification of proteinogenic amino acids is crucial for understanding their commonalities as well as their differences to provide a hint for why life settled on the usage of precisely those amino acids. It is also crucial for predicting electrostatic, hydrophobic, stacking and other interactions, for assessing conservation in multiple alignments and many other applications. While several methods have been proposed to find "the" optimal classification, they have several shortcomings, such as the lack of efficiency and interpretability or an unnecessarily high number of discriminating features. In this study, we propose a novel method involving a repeated binary separation via a minimum amount of five features (such as hydrophobicity or volume) expressed by numerical values for amino acid characteristics. The features are extracted from the AAindex database. By simple separation at the medians, we successfully derive the five properties volume, electron-ion-interaction potential, hydrophobicity, α-helix propensity, and π-helix propensity. We extend our analysis to separations other than by the median. We further score our combinations based on how natural the separations are.


Asunto(s)
Aminoácidos/química , Aminoácidos/clasificación , Biología Computacional/métodos , Aminoácidos/genética , Interacciones Hidrofóbicas e Hidrofílicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...