Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Brain Sci ; 13(9)2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37759878

RESUMEN

BACKGROUND: Reimplantations of autologous skull flaps after decompressive hemicraniectomies (DHs) are associated with high rates of postoperative bone flap resorption (BFR). We histologically assessed the cell viability of explanted bone flaps in certain periods of time after DH, in order to conclude whether precursors of BRF may be developed during their storage. METHODS: Skull bone flaps explanted during a DH between 2019 and 2020 were stored in a freezer at either -23 °C or -80 °C. After their thawing process, the skulls were collected. Parameters of bone metabolism, namely PTH1 and OPG, were analyzed via immunohistochemistry. H&E stain was used to assess the degree of avital bone tissue, whereas the repeated assays were performed after 6 months. RESULTS: A total of 17 stored skull flaps (8 at -23 °C; 9 at -80 °C) were analyzed. The duration of cryopreservation varied between 2 and 17 months. A relevant degree of bone avitality was observed in all skull flaps, which significantly increased at the repeated evaluation after 6 months (p < 0.001). Preservation at -23 °C (p = 0.006) as well as longer storage times (p < 0.001) were identified as prognostic factors for higher rates of bone avitality in a linear mixed regression model. CONCLUSIONS: Our novel finding shows a clear benefit from storage at -80° C, which should be carefully considered for the future management and storage of explanted skull flaps. Our analysis also further revealed a significant degree of bone avitality, a potential precursor of BFR, in skull flaps stored for several weeks. To this end, we should reconsider whether the reimplantation of autologous skull flaps instead of synthetic skull flaps is still justified.

2.
Biomedicines ; 10(3)2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35327366

RESUMEN

Cells of glioblastoma, the most frequent primary malignant brain tumor, are characterized by their rapid growth and infiltration of adjacent healthy brain parenchyma, which reflects their aggressive biological behavior. In order to maintain their excessive proliferation and invasion, glioblastomas exploit the innate biological capacities of the patients suffering from this tumor. The pathways involved in cell cycle regulation and apoptosis are the mechanisms most commonly affected. The following work reviews the regulatory pathways of cell growth in general as well as the dysregulated cell cycle and apoptosis relevant mechanisms observed in glioblastomas. We then describe the molecular targeting of the current established adjuvant therapy and present ongoing trials or completed studies on specific promising therapeutic agents that induce cell cycle arrest and apoptosis of glioblastoma cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...