RESUMEN
Photosynthetic electron flow, driven by photosystem I and II, provides chemical energy for carbon fixation. In addition to a linear mode a second cyclic route exists, which only involves photosystem I. The exact contributions of linear and cyclic transport are still a matter of debate. Here, we describe the development of a method that allows quantification of electron flow in absolute terms through photosystem I in a photosynthetic organism for the first time. Specific in-vivo protocols allowed to discern the redox states of plastocyanin, P700 and the FeS-clusters including ferredoxin at the acceptor site of PSI in the cyanobacterium Synechocystis sp. PCC 6803 with the near-infrared spectrometer Dual-KLAS/NIR. P700 absorbance changes determined with the Dual-KLAS/NIR correlated linearly with direct determinations of PSI concentrations using EPR. Dark-interval relaxation kinetics measurements (DIRKPSI) were applied to determine electron flow through PSI. Counting electrons from hydrogen oxidation as electron donor to photosystem I in parallel to DIRKPSI measurements confirmed the validity of the method. Electron flow determination by classical PSI yield measurements overestimates electron flow at low light intensities and saturates earlier compared to DIRKPSI. Combination of DIRKPSI with oxygen evolution measurements yielded a proportion of 35% of surplus electrons passing PSI compared to PSII. We attribute these electrons to cyclic electron transport, which is twice as high as assumed for plants. Counting electrons flowing through the photosystems allowed determination of the number of quanta required for photosynthesis to 11 per oxygen produced, which is close to published values.
Asunto(s)
Proteínas Bacterianas/metabolismo , Fotosíntesis , Complejo de Proteína del Fotosistema I/metabolismo , Synechocystis/metabolismo , Transporte de Electrón , Oxidación-Reducción , Complejo de Proteína del Fotosistema II/metabolismoRESUMEN
Polymerizing and filament-forming proteins are instrumental for numerous cellular processes such as cell division and growth. Their function in stabilization and localization of protein complexes and replicons is achieved by a filamentous structure. Known filamentous proteins assemble into homopolymers consisting of single subunits - for example, MreB and FtsZ in bacteria - or heteropolymers that are composed of two subunits, for example, keratin and α/ß tubulin in eukaryotes. Here, we describe two novel coiled-coil-rich proteins (CCRPs) in the filament-forming cyanobacterium Anabaena sp. PCC 7120 (hereafter Anabaena) that assemble into a heteropolymer and function in the maintenance of the Anabaena multicellular shape (termed trichome). The two CCRPs - Alr4504 and Alr4505 (named ZicK and ZacK) - are strictly interdependent for the assembly of protein filaments in vivo and polymerize nucleotide independently in vitro, similar to known intermediate filament (IF) proteins. A ΔzicKΔzacK double mutant is characterized by a zigzagged cell arrangement and hence a loss of the typical linear Anabaena trichome shape. ZicK and ZacK interact with themselves, with each other, with the elongasome protein MreB, the septal junction protein SepJ and the divisome associate septal protein SepI. Our results suggest that ZicK and ZacK function in cooperation with SepJ and MreB to stabilize the Anabaena trichome and are likely essential for the manifestation of the multicellular shape in Anabaena. Our study reveals the presence of filament-forming IF-like proteins whose function is achieved through the formation of heteropolymers in cyanobacteria.
Asunto(s)
Anabaena/genética , Proteínas Bacterianas/genética , Proteínas del Citoesqueleto/genética , Citoesqueleto/genética , Regulación Bacteriana de la Expresión Génica , Tricomas/genética , Anabaena/metabolismo , Anabaena/ultraestructura , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , División Celular , Clonación Molecular , Secuencia Conservada , Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/metabolismo , Citoesqueleto/metabolismo , Citoesqueleto/ultraestructura , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Genes Reporteros , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Histidina/genética , Histidina/metabolismo , Oligopéptidos/genética , Oligopéptidos/metabolismo , Polimerizacion , Multimerización de Proteína , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Tricomas/metabolismo , Tricomas/ultraestructuraRESUMEN
Plant GAGA-motif binding factors are encoded by the BARLEY B RECOMBINANT / BASIC PENTACYSTEINE (BBR/BPC) family, which fulfill indispensable functions in growth and development. BBR/BPC proteins control flower development, size of the stem cell niche and seed development through transcriptional regulation of homeotic transcription factor genes. They are responsible for the context dependent recruitment of Polycomb repressive complexes (PRC) or other repressive proteins to GAGA-motifs, which are contained in Polycomb repressive DNA-elements (PREs). Hallmark of the protein family is the highly conserved BPC domain, which is required for DNA binding. Here we study the evolution and diversification of the BBR/BPC family and its DNA-binding domain. Our analyses supports a further division of the family into four main groups (I-IV) and several subgroups, to resolve a strict monophyletic descent of the BPC domain. We prove a polyphyletic origin for group III proteins, which evolved from group I and II members through extensive loss of domains in the N-terminus. Conserved motif searches lend to the identification of a WAR/KHGTN consensus and a TIR/K motif at the very C-terminus of the BPC-domain. We could show by DPI-ELISA that this signature is required for DNA-binding in AtBPC1. Additional binding studies with AtBPC1, AtBPC6 and mutated oligonucleotides consolidated the binding to GAGA tetramers. To validate these findings, we used previously published ChIP-seq data from GFP-BPC6. We uncovered that many genes of the brassinosteroid signaling pathway are targeted by AtBPC6. Consistently, bpc6, bpc4 bpc6, and lhp1 bpc4 bpc4 mutants display brassinosteroid-dependent root growth phenotypes. Both, a function in brassinosteroid signaling and our phylogenetic data supports a link between BBR/BPC diversification in the land plant lineage and the complexity of flower and seed plant evolution.