Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
RSC Med Chem ; 14(9): 1755-1766, 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37731689

RESUMEN

Plasmodium falciparum dihydrofolate reductase (PfDHFR), a historical target for antimalarials, has been considered compromised due to resistance inducing mutations caused by pyrimethamine (PYR) overexposure. The clinical candidate P218 has demonstrated that inhibitors could efficiently target both PYR-sensitive and PYR-resistant parasites through careful drug design. Yet, P218 clinical development has been limited by its pharmacokinetic profile, incompatible with single dose regimen. Herein, we report the design of new PfDHFR inhibitors using fragment-based design, aiming at improved lipophilicity and overall drug-like properties. Fragment-based screening identified hits binding in the pABA site of the enzyme. Using structure-guided design, hits were elaborated into leads by fragment linking with 2,4-diaminopyrimidine. Resulting compounds display nM range inhibition of both drug-sensitive and resistant PfDHFR, high selectivity against the human isoform, drug-like lipophilicity and metabolic stability. Compound 4 and its ester derivative 3 kill blood stage TM4/8.2 parasite at nM concentrations while showing no toxicity against Vero cells.

2.
Molecules ; 27(11)2022 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-35684452

RESUMEN

In the fight towards eradication of malaria, identifying compounds active against new drug targets constitutes a key approach. Plasmodium falciparum 7,8-dihydro-6-hydroxymethylpterin-pyrophosphokinase (PfHPPK) has been advanced as a promising target, as being part of the parasite essential folate biosynthesis pathway while having no orthologue in the human genome. However, no drug discovery efforts have been reported on this enzyme. In this study, we conducted a three-step screening of our in-house antifolate library against PfHPPK using a newly designed PfHPPK-GFP protein construct. Combining virtual screening, differential scanning fluorimetry and enzymatic assay, we identified 14 compounds active against PfHPPK. Compounds' binding modes were investigated by molecular docking, suggesting competitive binding with the HMDP substrate. Cytotoxicity and in vitro ADME properties of hit compounds were also assessed, showing good metabolic stability and low toxicity. The most active compounds displayed low micromolar IC50 against drug-resistant parasites. The reported hit compounds constitute a good starting point for inhibitor development against PfHPPK, as an alternative approach to tackle the malaria parasite.


Asunto(s)
Antimaláricos , Difosfotransferasas , Plasmodium falciparum , Antimaláricos/química , Difosfotransferasas/antagonistas & inhibidores , Humanos , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Simulación del Acoplamiento Molecular , Plasmodium falciparum/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...