Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Gen Physiol ; 156(5)2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38557788

RESUMEN

DSC1, a Drosophila channel with sequence similarity to the voltage-gated sodium channel (NaV), was identified over 20 years ago. This channel was suspected to function as a non-specific cation channel with the ability to facilitate the permeation of calcium ions (Ca2+). A honeybee channel homologous to DSC1 was recently cloned and shown to exhibit strict selectivity for Ca2+, while excluding sodium ions (Na+), thus defining a new family of Ca2+ channels, known as CaV4. In this study, we characterize CaV4, showing that it exhibits an unprecedented type of inactivation, which depends on both an IFM motif and on the permeating divalent cation, like NaV and CaV1 channels, respectively. CaV4 displays a specific pharmacology with an unusual response to the alkaloid veratrine. It also possesses an inactivation mechanism that uses the same structural domains as NaV but permeates Ca2+ ions instead. This distinctive feature may provide valuable insights into how voltage- and calcium-dependent modulation of voltage-gated Ca2+ and Na+ channels occur under conditions involving local changes in intracellular calcium concentrations. Our study underscores the unique profile of CaV4 and defines this channel as a novel class of voltage-gated Ca2+ channels.


Asunto(s)
Calcio , Canales de Sodio Activados por Voltaje , Abejas , Animales , Canales de Sodio Activados por Voltaje/química , Iones
2.
Membranes (Basel) ; 13(1)2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36676903

RESUMEN

Cav2.1 channels are expressed throughout the brain and are the predominant Ca2+ channels in the Purkinje cells. These cerebellar neurons fire spontaneously, and Cav2.1 channels are involved in the regular pacemaking activity. The loss of precision of the firing pattern of Purkinje cells leads to ataxia, a disorder characterized by poor balance and difficulties in performing coordinated movements. In this study, we aimed at characterizing functional and structural consequences of four variations (p.A405T in I-II loop and p.R1359W, p.R1667W and p.S1799L in IIIS4, IVS4, and IVS6 helices, respectively) identified in patients exhibiting a wide spectrum of disorders including ataxia symptoms. Functional analysis using two major Cav2.1 splice variants (Cav2.1+e47 and Cav2.1-e47) in Xenopus laevis oocytes, revealed a lack of effect upon A405T substitution and a significant loss-of-function caused by R1359W, whereas R1667W and S1799L caused both channel gain-of-function and loss-of-function, in a splice variant-dependent manner. Structural analysis revealed the loss of interactions with S1, S2, and S3 helices upon R1359W and R1667W substitutions, but a lack of obvious structural changes with S1799L. Computational modeling suggests that biophysical changes induced by Cav2.1 pathogenic mutations might affect action potential frequency in Purkinje cells.

3.
Membranes (Basel) ; 12(5)2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35629767

RESUMEN

The number of insect GABA receptors (GABAr) available for expression studies has been recently increased by the cloning of the Acyrthosiphon pisum (pea aphid) RDL subunits. This large number of cloned RDL subunits from pest and beneficial insects opens the door to parallel pharmacological studies on the sensitivity of these different insect GABAr to various agonists or antagonists. The resulting analysis of the molecular basis of the species-specific GABAr responses to insecticides is necessary not only to depict and understand species toxicity, but also to help at the early identification of unacceptable toxicity of insecticides toward beneficial insects such as Apis mellifera (honeybees). Using heterologous expression in Xenopus laevis oocytes, and two-electrode voltage-clamp recording to assess the properties of the GABAr, we performed a comparative analysis of the pharmacological sensitivity of RDL subunits from A. pisum, A. mellifera and Varroa destructor GABAr to three pesticides (fipronil, picrotoxin and dieldrin). These data were compared to similar characterizations performed on two Homo sapiens GABA-A receptors (α2ß2γ2 and α2ß2γ2). Our results underline a global conservation of the pharmacological profiles of these receptors, with some interesting species specificities, nonetheless, and suggest that this approach can be useful for the early identification of poorly specific molecules.

4.
Plant Cell ; 34(5): 2019-2037, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35157082

RESUMEN

Stomata optimize land plants' photosynthetic requirements and limit water vapor loss. So far, all of the molecular and electrical components identified as regulating stomatal aperture are produced, and operate, directly within the guard cells. However, a completely autonomous function of guard cells is inconsistent with anatomical and biophysical observations hinting at mechanical contributions of epidermal origins. Here, potassium (K+) assays, membrane potential measurements, microindentation, and plasmolysis experiments provide evidence that disruption of the Arabidopsis thaliana K+ channel subunit gene AtKC1 reduces pavement cell turgor, due to decreased K+ accumulation, without affecting guard cell turgor. This results in an impaired back pressure of pavement cells onto guard cells, leading to larger stomatal apertures. Poorly rectifying membrane conductances to K+ were consistently observed in pavement cells. This plasmalemma property is likely to play an essential role in K+ shuttling within the epidermis. Functional complementation reveals that restoration of the wild-type stomatal functioning requires the expression of the transgenic AtKC1 at least in the pavement cells and trichomes. Altogether, the data suggest that AtKC1 activity contributes to the building of the back pressure that pavement cells exert onto guard cells by tuning K+ distribution throughout the leaf epidermis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fotosíntesis , Hojas de la Planta/metabolismo , Estomas de Plantas/metabolismo
5.
Front Pharmacol ; 12: 794680, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35046818

RESUMEN

Gamma-L-glutamyl-L-glutamate (γ-Glu-Glu) was synthetized and further characterized for its activity on cultured neurons. We observed that γ-Glu-Glu elicited excitatory effects on neurons likely by activating mainly the N-methyl-D-aspartate (NMDA) receptors. These effects were dependent on the integrity of synaptic transmission as they were blocked by tetrodotoxin (TTX). We next evaluated its activity on NMDA receptors by testing it on cells expressing these receptors. We observed that γ-Glu-Glu partially activated NMDA receptors and exhibited better efficacy for NMDA receptors containing the GluN2B subunit. Moreover, at low concentration, γ-Glu-Glu potentiated the responses of glutamate on NMDA receptors. Finally, the endogenous production of γ-Glu-Glu was measured by LC-MS on the extracellular medium of C6 rat astroglioma cells. We found that extracellular γ-Glu-Glu concentration was, to some extent, directly linked to GSH metabolism as γ-Glu-Glu can be a by-product of glutathione (GSH) breakdown after γ-glutamyl transferase action. Therefore, γ-Glu-Glu could exert excitatory effects by activating neuronal NMDA receptors when GSH production is enhanced.

6.
Front Aging Neurosci ; 13: 785727, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34975458

RESUMEN

The regulation of the redox status involves the activation of intracellular pathways as Nrf2 which provides hormetic adaptations against oxidative stress in response to environmental stimuli. In the brain, Nrf2 activation upregulates the formation of glutathione (GSH) which is the primary antioxidant system mainly produced by astrocytes. Astrocytes have also been shown to be themselves the target of oxidative stress. However, how changes in the redox status itself could impact the intracellular Ca2+ homeostasis in astrocytes is not known, although this could be of great help to understand the neuronal damage caused by oxidative stress. Indeed, intracellular Ca2+ changes in astrocytes are crucial for their regulatory actions on neuronal networks. We have manipulated GSH concentration in astroglioma cells with selective inhibitors and activators of the enzymes involved in the GSH cycle and analyzed how this could modify Ca2+ homeostasis. IP3-mediated store-operated calcium entry (SOCE), obtained after store depletion elicited by Gq-linked purinergic P2Y receptors activation, are either sensitized or desensitized, following GSH depletion or increase, respectively. The desensitization may involve decreased expression of the proteins STIM2, Orai1, and Orai3 which support SOCE mechanism. The sensitization process revealed by exposing cells to oxidative stress likely involves the increase in the activity of Calcium Release-Activated Channels (CRAC) and/or in their membrane expression. In addition, we observe that GSH depletion drastically impacts P2Y receptor-mediated changes in membrane currents, as evidenced by large increases in Ca2+-dependent K+ currents. We conclude that changes in the redox status of astrocytes could dramatically modify Ca2+ responses to Gq-linked GPCR activation in both directions, by impacting store-dependent Ca2+-channels, and thus modify cellular excitability under purinergic stimulation.

7.
Plant J ; 98(3): 418-433, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30673148

RESUMEN

Root hairs, as lateral extensions of epidermal cells, provide large absorptive surfaces to the root and are major actors in plant hydromineral nutrition. In contact with the soil they also constitute a site of interactions between the plant and rhizospheric microorganisms. In legumes, initiation of symbiotic interactions with N2 -fixing rhizobia is often triggered at the root hair cell membrane in response to nodulation factors secreted by rhizobia, and involves early signaling events with changes in H+ , Ca2+ , K+ and Cl- fluxes inducing transient depolarization of the cell membrane. Here, we aimed to build a functional repertoire of the major root hair conductances to cations and anions in the sequenced legume model Medicago truncatula. Five root hair conductances were characterized through patch-clamp experiments on enzymatically recovered root hair protoplasts. These conductances displayed varying properties of voltage dependence, kinetics and ion selectivity. They consisted of hyperpolarization- and depolarization-activated conductances for K+ , cations or Cl- . Among these, one weakly outwardly rectifying cationic conductance and one hyperpolarization-activated slowly inactivating anionic conductance were not known as active in root hairs. All five conductances were detected in apical regions of young growing root hairs using membrane spheroplasts obtained by laser-assisted cell-wall microdissection. Combined with recent root hair transcriptomes of M. truncatula, this functional repertoire of conductances is expected to help the identification of candidate genes for reverse genetics studies to investigate the possible role of each conductance in root hair growth and interaction with the biotic and abiotic environment.


Asunto(s)
Aniones/metabolismo , Cationes/metabolismo , Membrana Celular/metabolismo , Medicago truncatula/metabolismo , Raíces de Plantas/metabolismo , Proteínas de Plantas/metabolismo
8.
J Biol Chem ; 293(49): 19012-19024, 2018 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-30333227

RESUMEN

In insects, γ-aminobutyric acid (GABA) is the major inhibitory neurotransmitter, and GABA-gated ion channels are the target of different classes of insecticides, including fipronil. We report here the cloning of six subunits (four RDL, one LCCH3, and one GRD) that constitute the repertoire of the GABA-gated ion channel family of the Varroa mite (Varroa destructor), a honey bee ectoparasite. We also isolated a truncated GRD subunit with a premature stop codon. We found that when expressed in Xenopus laevis oocytes, three of the four RDL subunits (VdesRDL1, VdesRDL2, and VdesRDL3) formed functional, homomultimeric anionic receptors, whereas GRD and LCCH3 produced heteromultimeric cationic receptors. These receptors displayed specific sensitivities toward GABA and fipronil, and VdesRDL1 was the most resistant to the insecticide. We identified specific residues in the VdesRDL1 pore-lining region that explain its high resistance to fipronil. VdesRDL4 did not form a functional receptor when expressed alone, but it assembled with VdesRDL1 to form a heteromultimeric receptor with properties distinct from those of the VdesRDL1 homomultimeric receptor. Moreover, VdesRDL1 physically interacted with VdesRDL3, generating a heteromultimeric receptor combining properties of both subunits. On the other hand, we did not detect any functional interaction between VdesLCCH3 and the VdesRDL subunits, an observation that differed from what was previously reported for Drosophila melanogaster In conclusion, this study provides insights relevant to improve our understanding of the precise role of GABAergic signaling in insects and new tools for the development of Varroa mite-specific insecticidal agents that do not harm honey bees.


Asunto(s)
Proteínas de Artrópodos/metabolismo , Receptores de GABA/metabolismo , Varroidae/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas de Artrópodos/antagonistas & inhibidores , Proteínas de Artrópodos/genética , Antagonistas del GABA/farmacología , Oocitos/metabolismo , Multimerización de Proteína , Subunidades de Proteína/antagonistas & inhibidores , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Pirazoles/farmacología , Receptores de GABA/genética , Varroidae/genética , Xenopus laevis
9.
Plant Physiol ; 166(1): 314-26, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25037208

RESUMEN

Ca(2) (+)-dependent protein kinases (CPKs) form a large family of 34 genes in Arabidopsis (Arabidopsis thaliana). Based on their dependence on Ca(2+), CPKs can be sorted into three types: strictly Ca(2+)-dependent CPKs, Ca(2+)-stimulated CPKs (with a significant basal activity in the absence of Ca(2+)), and essentially calcium-insensitive CPKs. Here, we report on the third type of CPK, CPK13, which is expressed in guard cells but whose role is still unknown. We confirm the expression of CPK13 in Arabidopsis guard cells, and we show that its overexpression inhibits light-induced stomatal opening. We combine several approaches to identify a guard cell-expressed target. We provide evidence that CPK13 (1) specifically phosphorylates peptide arrays featuring Arabidopsis K(+) Channel KAT2 and KAT1 polypeptides, (2) inhibits KAT2 and/or KAT1 when expressed in Xenopus laevis oocytes, and (3) closely interacts in plant cells with KAT2 channels (Förster resonance energy transfer-fluorescence lifetime imaging microscopy). We propose that CPK13 reduces stomatal aperture through its inhibition of the guard cell-expressed KAT2 and KAT1 channels.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Estomas de Plantas/enzimología , Canales de Potasio de Rectificación Interna/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo , Proteínas Quinasas/metabolismo , Animales , Calcio/metabolismo , Microscopía Fluorescente , Técnicas de Placa-Clamp , Fosforilación , Xenopus laevis
10.
Front Plant Sci ; 5: 43, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24600459

RESUMEN

Calcium (Ca(2+)) is a second messenger involved in many plant signaling processes. Biotic and abiotic stimuli induce Ca(2+) signals within plant cells, which, when decoded, enable these cells to adapt in response to environmental stresses. Multiple examples of Ca(2+) signals from plants containing the fluorescent yellow cameleon sensor (YC) have contributed to the definition of the Ca(2+) signature in some cell types such as root hairs, pollen tubes and guard cells. YC is, however, of limited use in highly autofluorescent plant tissues, in particular mesophyll cells. Alternatively, the bioluminescent reporter aequorin enables Ca(2+) imaging in the whole plant, including mesophyll cells, but this requires specific devices capable of detecting the low amounts of emitted light. Another type of Ca(2+) sensor, referred to as GFP-aequorin (G5A), has been engineered as a chimeric protein, which combines the two photoactive proteins from the jellyfish Aequorea victoria, the green fluorescent protein (GFP) and the bioluminescent protein aequorin. The Ca(2+)-dependent light-emitting property of G5A is based on a bioluminescence resonance energy transfer (BRET) between aequorin and GFP. G5A has been used for over 10 years for enhanced in vivo detection of Ca(2+) signals in animal tissues. Here, we apply G5A in Arabidopsis and show that G5A greatly improves the imaging of Ca(2+) dynamics in intact plants. We describe a simple method to image Ca(2+) signals in autofluorescent leaves of plants with a cooled charge-coupled device (cooled CCD) camera. We present data demonstrating how plants expressing the G5A probe can be powerful tools for imaging of Ca(2+) signals. It is shown that Ca(2+) signals propagating over long distances can be visualized in intact plant leaves and are visible mainly in the veins.

11.
Nat Commun ; 4: 2625, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24129639

RESUMEN

The plant hormone auxin (indole-3-acetic acid, IAA) has a crucial role in plant development. Its spatiotemporal distribution is controlled by a combination of biosynthetic, metabolic and transport mechanisms. Four families of auxin transporters have been identified that mediate transport across the plasma or endoplasmic reticulum membrane. Here we report the discovery and the functional characterization of the first vacuolar auxin transporter. We demonstrate that WALLS ARE THIN1 (WAT1), a plant-specific protein that dictates secondary cell wall thickness of wood fibres, facilitates auxin export from isolated Arabidopsis vacuoles in yeast and in Xenopus oocytes. We unambiguously identify IAA and related metabolites in isolated Arabidopsis vacuoles, suggesting a key role for the vacuole in intracellular auxin homoeostasis. Moreover, local auxin application onto wat1 mutant stems restores fibre cell wall thickness. Our study provides new insight into the complexity of auxin transport in plants and a means to dissect auxin function during fibre differentiation.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Proteínas de Transporte de Membrana/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Vacuolas/metabolismo , Animales , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/farmacología , Transporte Biológico , Pared Celular/efectos de los fármacos , Pared Celular/genética , Pared Celular/ultraestructura , Redes Reguladoras de Genes , Homeostasis , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana/farmacología , Mutación , Saccharomyces cerevisiae/metabolismo , Xenopus laevis/metabolismo
12.
Plant Signal Behav ; 6(4): 558-62, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21445013

RESUMEN

Potassium (K (+) ) is an important nutrient for plants. It serves as a cofactor of various enzymes and as the major inorganic solute maintaining plant cell turgor. In a recent study, an as yet unknown role of K (+) in plant homeostasis was shown. It was demonstrated that K (+) gradients in vascular tissues can serve as an energy source for phloem (re)loading processes and that the voltage-gated K (+) channels of the AKT2-type play a unique role in this process. The AKT2 channel can be converted by phosphorylation of specific serine residues (S210 and S329) into a non-rectifying channel that allows a rapid efflux of K (+) from the sieve element/companion cells (SE/CC) complex. The energy of this flux is used by other transporters for phloem (re)loading processes. Nonetheless, the results do indicate that post-translational modifications at S210 and S329 alone cannot explain AKT2 regulation. Here, we discuss the existence of multiple post-translational modification steps that work in concert to convert AKT2 from an inward-rectifying into a non-rectifying K (+) channel.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Canales de Potasio/metabolismo , Potasio/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Modelos Biológicos , Plantas Modificadas Genéticamente/genética , Canales de Potasio/genética , Procesamiento Proteico-Postraduccional/genética , Procesamiento Proteico-Postraduccional/fisiología
13.
Cell Res ; 21(7): 1116-30, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21445098

RESUMEN

Potassium (K(+)) channel function is fundamental to many physiological processes. However, components and mechanisms regulating the activity of plant K(+) channels remain poorly understood. Here, we show that the calcium (Ca(2+)) sensor CBL4 together with the interacting protein kinase CIPK6 modulates the activity and plasma membrane (PM) targeting of the K(+) channel AKT2 from Arabidopsis thaliana by mediating translocation of AKT2 to the PM in plant cells and enhancing AKT2 activity in oocytes. Accordingly, akt2, cbl4 and cipk6 mutants share similar developmental and delayed flowering phenotypes. Moreover, the isolated regulatory C-terminal domain of CIPK6 is sufficient for mediating CBL4- and Ca(2+)-dependent channel translocation from the endoplasmic reticulum membrane to the PM by a novel targeting pathway that is dependent on dual lipid modifications of CBL4 by myristoylation and palmitoylation. Thus, we describe a critical mechanism of ion-channel regulation where a Ca(2+) sensor modulates K(+) channel activity by promoting a kinase interaction-dependent but phosphorylation-independent translocation of the channel to the PM.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Calcio/metabolismo , Canales de Potasio/metabolismo , Proteínas Quinasas/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Regulación de la Expresión Génica de las Plantas , Fenotipo , Fosforilación , Canales de Potasio/genética , Proteínas Quinasas/genética , Transporte de Proteínas , Transducción de Señal
14.
Proc Natl Acad Sci U S A ; 108(2): 864-9, 2011 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-21187374

RESUMEN

The essential mineral nutrient potassium (K(+)) is the most important inorganic cation for plants and is recognized as a limiting factor for crop yield and quality. Nonetheless, it is only partially understood how K(+) contributes to plant productivity. K(+) is used as a major active solute to maintain turgor and to drive irreversible and reversible changes in cell volume. K(+) also plays an important role in numerous metabolic processes, for example, by serving as an essential cofactor of enzymes. Here, we provide evidence for an additional, previously unrecognized role of K(+) in plant growth. By combining diverse experimental approaches with computational cell simulation, we show that K(+) circulating in the phloem serves as a decentralized energy storage that can be used to overcome local energy limitations. Posttranslational modification of the phloem-expressed Arabidopsis K(+) channel AKT2 taps this "potassium battery," which then efficiently assists the plasma membrane H(+)-ATPase in energizing the transmembrane phloem (re)loading processes.


Asunto(s)
Arabidopsis/genética , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Potasio/química , Proteínas de Arabidopsis/genética , Biología Computacional/métodos , Genes de Plantas , Genoma de Planta , Modelos Biológicos , Modelos Genéticos , Modelos Teóricos , Mutación , Oxígeno/química , Fenotipo , Fenómenos Fisiológicos de las Plantas , Canales de Potasio/genética , Procesamiento Proteico-Postraduccional
15.
J Biol Chem ; 285(9): 6265-74, 2010 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-20040603

RESUMEN

Guard cells adjust their volume by changing their ion content due to intense fluxes that, for K(+), are believed to flow through inward or outward Shaker channels. Because Shaker channels can be homo- or heterotetramers and Arabidopsis guard cells express at least five genes encoding inward Shaker subunits, including the two major ones, KAT1 and KAT2, the molecular identity of inward Shaker channels operating therein is not yet completely elucidated. Here, we first addressed the properties of KAT1-KAT2 heteromers by expressing KAT1-KAT2 tandems in Xenopus oocytes. Then, computer analyses of the data suggested that coexpression of free KAT1 and KAT2 subunits resulted mainly in heteromeric channels made of two subunits of each type due to some preferential association of KAT1-KAT2 heterodimers at the first step of channel assembly. This was further supported by the analysis of KAT2 effect on KAT1 targeting in tobacco cells. Finally, patch-clamp recordings of native inward channels in wild-type and mutant genotypes strongly suggested that this preferential heteromerization occurs in planta and that Arabidopsis guard cell inward Shaker channels are mainly heteromers of KAT1 and KAT2 subunits.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Canales de Potasio de Rectificación Interna/fisiología , Canales de Potasio con Entrada de Voltaje/fisiología , Animales , Arabidopsis/citología , Proteínas de Arabidopsis/metabolismo , Electrofisiología , Mutación , Oocitos , Técnicas de Placa-Clamp , Canales de Potasio de Rectificación Interna/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo , Multimerización de Proteína , Xenopus
16.
Plant J ; 61(1): 58-69, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19781051

RESUMEN

Grapevine (Vitis vinifera), the genome sequence of which has recently been reported, is considered as a model species to study fleshy fruit development and acid fruit physiology. Grape berry acidity is quantitatively and qualitatively affected upon increased K(+) accumulation, resulting in deleterious effects on fruit (and wine) quality. Aiming at identifying molecular determinants of K(+) transport in grapevine, we have identified a K(+) channel, named VvK1.1, from the Shaker family. In silico analyses indicated that VvK1.1 is the grapevine counterpart of the Arabidopsis AKT1 channel, known to dominate the plasma membrane inward conductance to K(+) in root periphery cells, and to play a major role in K(+) uptake from the soil solution. VvK1.1 shares common functional properties with AKT1, such as inward rectification (resulting from voltage sensitivity) or regulation by calcineurin B-like (CBL)-interacting protein kinase (CIPK) and Ca(2+)-sensing CBL partners (shown upon heterologous expression in Xenopus oocytes). It also displays distinctive features such as activation at much more negative membrane voltages or expression strongly sensitive to drought stress and ABA (upregulation in aerial parts, downregulation in roots). In roots, VvK1.1 is mainly expressed in cortical cells, like AKT1. In aerial parts, VvK1.1 transcripts were detected in most organs, with expression levels being the highest in the berries. VvK1.1 expression in the berry is localized in the phloem vasculature and pip teguments, and displays strong upregulation upon drought stress, by about 10-fold.VvK1.1 could thus play a major role in K(+) loading into berry tissues, especially upon drought stress.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Sequías , Proteínas de Plantas/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Canales de Potasio de la Superfamilia Shaker/fisiología , Vitis/genética , Ácido Abscísico/farmacología , Proteínas de Arabidopsis/clasificación , Proteínas de Arabidopsis/genética , Biología Computacional , Frutas/efectos de los fármacos , Frutas/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/genética , Genoma de Planta/genética , Hibridación in Situ , Filogenia , Componentes Aéreos de las Plantas/efectos de los fármacos , Componentes Aéreos de las Plantas/genética , Proteínas de Plantas/clasificación , Proteínas de Plantas/genética , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Reacción en Cadena de la Polimerasa , Canales de Potasio/clasificación , Canales de Potasio/genética , Canales de Potasio/fisiología , Proteínas Serina-Treonina Quinasas/genética , Canales de Potasio de la Superfamilia Shaker/clasificación , Canales de Potasio de la Superfamilia Shaker/genética , Cloruro de Sodio/farmacología , Vitis/efectos de los fármacos
17.
Proc Natl Acad Sci U S A ; 105(13): 5271-6, 2008 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-18367672

RESUMEN

At least four genes encoding plasma membrane inward K+ channels (K(in) channels) are expressed in Arabidopsis guard cells. A double mutant plant was engineered by disruption of a major K(in) channel gene and expression of a dominant negative channel construct. Using the patch-clamp technique revealed that this mutant was totally deprived of guard cell K(in) channel (GCK(in)) activity, providing a model to investigate the roles of this activity in the plant. GCK(in) activity was found to be an essential effector of stomatal opening triggered by membrane hyperpolarization and thereby of blue light-induced stomatal opening at dawn. It improved stomatal reactivity to external or internal signals (light, CO2 availability, and evaporative demand). It protected stomatal function against detrimental effects of Na+ when plants were grown in the presence of physiological concentrations of this cation, probably by enabling guard cells to selectively and rapidly take up K+ instead of Na+ during stomatal opening, thereby preventing deleterious effects of Na+ on stomatal closure. It was also shown to be a key component of the mechanisms that underlie the circadian rhythm of stomatal opening, which is known to gate stomatal responses to extracellular and intracellular signals. Finally, in a meteorological scenario with higher light intensity during the first hours of the photophase, GCK(in) activity was found to allow a strong increase (35%) in plant biomass production. Thus, a large diversity of approaches indicates that GCK(in) activity plays pleiotropic roles that crucially contribute to plant adaptation to fluctuating and stressing natural environments.


Asunto(s)
Adaptación Biológica , Biomasa , Ambiente , Canales de Potasio/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Dióxido de Carbono/metabolismo , Ritmo Circadiano , Electrofisiología , Luz , Mutación/genética , Técnicas de Placa-Clamp , Plantas Modificadas Genéticamente , Canales de Potasio/genética , Ingeniería de Proteínas
18.
Plant J ; 54(6): 1076-82, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18346194

RESUMEN

Voltage-gated potassium channels of plants are multimeric proteins built of four alpha-subunits. In the model plant Arabidopsis thaliana, nine genes coding for K+ channel alpha-subunits have been identified. When co-expressed in heterologous expression systems, most of them display the ability to form heteromeric K+ channels. Till now it was not clear whether plants use this potential of heteromerization to increase the functional diversity of potassium channels. Here, we designed an experimental approach employing different transgenic plant lines that allowed us to prove the existence of heteromeric K+ channels in plants. The chosen strategy might also be useful for investigating the activity and function of other multimeric channel proteins like, for instance, cyclic-nucleotide gated channels, tandem-pore K+ channels and glutamate receptor channels.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , ADN Bacteriano/genética , ADN de Plantas/genética , Mutagénesis Insercional , Transpiración de Plantas , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Canales de Potasio con Entrada de Voltaje/genética , Isoformas de Proteínas , Multimerización de Proteína
19.
Plant J ; 53(1): 115-23, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17976154

RESUMEN

Amongst the nine voltage-gated K(+) channel (Kv) subunits expressed in Arabidopsis, AtKC1 does not seem to form functional Kv channels on its own, and is therefore said to be silent. It has been proposed to be a regulatory subunit, and to significantly influence the functional properties of heteromeric channels in which it participates, along with other Kv channel subunits. The mechanisms underlying these properties of AtKC1 remain unknown. Here, the transient (co-)expression of AtKC1, AKT1 and/or KAT1 genes was obtained in tobacco mesophyll protoplasts, which lack endogenous inward Kv channel activity. Our experimental conditions allowed both localization of expressed polypeptides (GFP-tagging) and recording of heterologously expressed Kv channel activity (untagged polypeptides). It is shown that AtKC1 remains in the endoplasmic reticulum unless it is co-expressed with AKT1. In these conditions heteromeric AtKC1-AKT1 channels are obtained, and display functional properties different from those of homomeric AKT1 channels in the same context. In particular, the activation threshold voltage of the former channels is more negative than that of the latter ones. Also, it is proposed that AtKC1-AKT1 heterodimers are preferred to AKT1-AKT1 homodimers during the process of tetramer assembly. Similar results are obtained upon co-expression of AtKC1 with KAT1. The whole set of data provides evidence that AtKC1 is a conditionally-targeted Kv subunit, which probably downregulates the physiological activity of other Kv channel subunits in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/química , Arabidopsis/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo , Canales de Potasio/química , Potasio/metabolismo , Arabidopsis/citología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/aislamiento & purificación , Proteínas de Arabidopsis/metabolismo , Canales de Potasio/metabolismo , Canales de Potasio con Entrada de Voltaje/química , Canales de Potasio con Entrada de Voltaje/genética , Canales de Potasio con Entrada de Voltaje/aislamiento & purificación , Subunidades de Proteína/metabolismo , Protoplastos/metabolismo , ARN de Planta/genética , ARN de Planta/metabolismo , Nicotiana/metabolismo
20.
Plant Signal Behav ; 3(9): 622-5, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19513252

RESUMEN

Potassium translocation in plants is accomplished by a large variety of transport systems. Most of the available molecular information on these proteins concerns voltage-gated potassium channels (Kv channels). The Arabidopsis genome comprises nine genes encoding alpha-subunits of Kv channels. Based on knowledge of their animal homologues, and on biochemical investigations, it is broadly admitted that four such polypeptides must assemble to yield a functional Kv channel. The intrinsic functional properties of Kv channel alpha-subunits have been described by expressing them in suitable heterologous contexts where homo-tetrameric channels could be characterized. However, due to the high similarity of both the polypeptidic sequence and the structural scheme of Kv channel alpha-subunits, formation of heteromeric Kv channels by at least two types of alpha-subunits is conceivable. Several examples of such heteromeric plant Kv channels have been studied in heterologous expression systems and evidence that heteromerization actually occurs in planta has now been published. It is therefore challenging to uncover the physiological role of this heteromerization. Fine tuning of Kv channels by heteromerisation could be relevant not only to potassium transport but also to electrical signaling within the plant.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...