Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 357: 142091, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38648987

RESUMEN

The two trace elements cobalt (Co) and nickel (Ni) are widely distributed in the environment due to the increasing industrial application, for example in lithium-ion batteries. Both metals are known to cause detrimental health impacts to humans when overexposed and both are supposed to be a risk factor for various diseases. The individual toxicity of Co and Ni has been partially investigated, however the underlying mechanisms, as well as the interactions of both remain unknown. In this study, we focused on the treatment of liver carcinoma (HepG2) and astrocytoma (CCF-STTG1) cells as a model for the target sites of these two metals. We investigated their effects in single and combined exposure on cell survival, cell death mechanisms, bioavailability, and the induction of oxidative stress. The combination of CoCl2 and NiCl2 resulted in higher Co levels with subsequent decreased amount of Ni compared to the individual treatment. Only CoCl2 and the combination of both metals led to RONS induction and increased GSSG formation, while apoptosis and necrosis seem to be involved in the cell death mechanisms of both CoCl2 and NiCl2. Collectively, this study demonstrates cell-type specific toxicity, with HepG2 representing the more sensitive cell line. Importantly, combined exposure to CoCl2 and NiCl2 is more toxic than single exposure, which may originate partly from the respective cellular Co and Ni content. Our data imply that the major mechanism of joint toxicity is associated with oxidative stress. More studies are needed to assess toxicity after combined exposure to elements such as Co and Ni to advance an improved hazard prediction for less artificial and more real-life exposure scenarios.


Asunto(s)
Supervivencia Celular , Cobalto , Hígado , Níquel , Estrés Oxidativo , Cobalto/toxicidad , Humanos , Níquel/toxicidad , Estrés Oxidativo/efectos de los fármacos , Células Hep G2 , Hígado/efectos de los fármacos , Hígado/metabolismo , Supervivencia Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Disponibilidad Biológica , Línea Celular Tumoral
2.
Chemosphere ; 345: 140434, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37865207

RESUMEN

Cobalt (Co) and Nickel (Ni) are increasingly found in our environment. We analysed their combined toxicity and uptake mechanisms in the early food chain by studying bacteria and the bacterivorous ciliate Paramecium as a primary consumer. We exposed both species to these metals to measure the toxicity, uptake and transfer of metals from bacteria to Paramecium. We found that Ni is more toxic than Co, and that toxicity increases for both metals when (i) food bacteria are absent and (ii) both metals are applied in combination. The cellular content in bacteria after exposure shows a concentration dependent bias for either Ni or Co. Comparing single treatment and joint exposure, bacteria show increased levels of both metals when these are both exposed. To imitate the basic level of the food chain, we fed these bacteria to paramecia. The cellular content shows a similar ratio of Nickel and Cobalt as in food bacteria. This is different to the direct application of both metals to paramecia, where Cobalt is enriched over Nickel. This indicates that bacteria can selectively pre-accumulate metals for introduction into the food chain. We also analysed the transcriptomic response of Paramecium to sublethal doses of Nickel and Cobalt to gain insight into their toxicity mechanisms. Gene ontology (GO) analysis indicates common deregulated pathways, such as ammonium transmembrane transport and ubiquitine-associated protein degradation. Many redox-related genes also show deregulation of gene expression, indicating cellular adaptation to increased RONS stress. This suggests that both metals may also target the same cellular pathways and this is consistent with the increased toxicity of both metals when used together. Our data reveal complex ecotoxicological pathways for these metals and highlights the different parameters for their fate in the ecosystem, in the food chain and their ecotoxicological risk after environmental contamination.


Asunto(s)
Níquel , Paramecium , Níquel/análisis , Cobalto/análisis , Ecosistema , Paramecium/metabolismo , Metales , Bacterias/metabolismo
3.
Artículo en Inglés | MEDLINE | ID: mdl-37209457

RESUMEN

Alterations in reduced and oxidized glutathione (GSH/GSSG) levels represent an important marker for oxidative stress and potential disease progression in toxicological research. Since GSH can be oxidized rapidly, using a stable and reliable method for sample preparation and GSH/GSSG quantification is essential to obtain reproducible data. Here we describe an optimised sample processing combined with a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method, validated for different biological matrices (lysates from HepG2 cells, C. elegans, and mouse liver tissue). To avoid autoxidation of GSH, samples were treated with the thiol-masking agent N-ethylmaleimide (NEM) and sulfosalicylic acid (SSA) in a single step. With an analysis time of 5 min, the developed LC-MS/MS method offers simultaneous determination of GSH and GSSG at high sample throughput with high sensitivity. This is especially interesting with respect of screening for oxidative and protective properties of substances in in vitro and in vivo models, e.g. C. elegans. In addition to method validation parameters (linearity, limit of detection (LOD), limit of quantification (LOQ), recovery, interday, intraday), we verified the method by using menadione and L-buthionine-(S,R)-sulfoximine (BSO) as well established modulators of cellular GSH and GSSG concentrations. Thereby menadione proved to be a reliable positive control also in C. elegans.


Asunto(s)
Glutatión , Espectrometría de Masas en Tándem , Ratones , Animales , Glutatión/metabolismo , Disulfuro de Glutatión/metabolismo , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos , Vitamina K 3/análisis , Caenorhabditis elegans/metabolismo , Oxidación-Reducción
4.
Mol Nutr Food Res ; 67(6): e2200283, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36683243

RESUMEN

SCOPE: Despite their essentiality, several studies have shown that either manganese (Mn) or zinc (Zn) overexposure may lead to detrimental health effects. Although Mn is transported by some of the SLC family transporters that translocate Zn, the role of Zn in hepatocellular Mn transport and Mn-induced toxicity have yet to be fully characterized. METHODS AND RESULTS: The human hepatoma cell line, HepG2, is utilized. Total cellular Mn and Zn amounts are determined after cells are treated with Zn 2 or 24 h prior to Mn incubation for additional 24 h with inductively coupled plasma-based spectrometry and labile Zn is assessed with the fluorescent probe FluoZin-3. Furthermore, mRNA expression of genes involved in metal homeostasis, and mechanistic endpoints associated with Mn-induced cytotoxicity are addressed. These results suggest that Zn protects against Mn-induced cytotoxicity and impacts Mn bioavailability to a great extent when cells are preincubated with higher Zn concentrations for longer duration as characterized by decreased activation of caspase-3 as well as lactate dehydrogenase (LDH) release. CONCLUSIONS: Zn protects against Mn-induced cytotoxicity in HepG2 cells possibly due to decreased Mn bioavailability. Additionally, mRNA expression of metal homeostasis-related genes indicates possible underlying pathways that should to be addressed in future studies.


Asunto(s)
Manganeso , Zinc , Humanos , Manganeso/toxicidad , Zinc/farmacología , Zinc/metabolismo , Disponibilidad Biológica , Células Hep G2 , ARN Mensajero/genética , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...