Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 14: 1205558, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37465028

RESUMEN

Serpentinization reactions produce highly reduced waters that have hyperalkaline pH and that can have high concentrations of H2 and CH4. Putatively autotrophic methanogenic archaea have been identified in the subsurface waters of the Samail Ophiolite, Sultanate of Oman, though the strategies to overcome hyperalkaline pH and dissolved inorganic carbon limitation remain to be fully understood. Here, we recovered metagenome assembled genomes (MAGs) and applied a metapangenomic approach to three different Methanobacterium populations to assess habitat-specific functional gene distribution. A Type I population was identified in the fluids with neutral pH, while a Type II and "Mixed" population were identified in the most hyperalkaline fluids (pH 11.63). The core genome of all Methanobacterium populations highlighted potential DNA scavenging techniques to overcome phosphate or nitrogen limitation induced by environmental conditions. With particular emphasis on the Mixed and Type II population found in the most hyperalkaline fluids, the accessory genomes unique to each population reflected adaptation mechanisms suggesting lifestyles that minimize niche overlap. In addition to previously reported metabolic capability to utilize formate as an electron donor and generate intracellular CO2, the Type II population possessed genes relevant to defense against antimicrobials and assimilating potential osmoprotectants to provide cellular stability. The accessory genome of the Mixed population was enriched in genes for multiple glycosyltransferases suggesting reduced energetic costs by adhering to mineral surfaces or to other microorganisms, and fostering a non-motile lifestyle. These results highlight the niche differentiation of distinct Methanobacterium populations to circumvent the challenges of serpentinization impacted fluids through coexistence strategies, supporting our ability to understand controls on methanogenic lifestyles and adaptations within the serpentinizing subsurface fluids of the Samail Ophiolite.

2.
Proc Natl Acad Sci U S A ; 119(42): e2206845119, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36215489

RESUMEN

Little is known of acetogens in contemporary serpentinizing systems, despite widely supported theories that serpentinite-hosted environments supported the first life on Earth via acetogenesis. To address this knowledge gap, genome-resolved metagenomics was applied to subsurface fracture water communities from an area of active serpentinization in the Samail Ophiolite, Sultanate of Oman. Two deeply branching putative bacterial acetogen types were identified in the communities belonging to the Acetothermia (hereafter, types I and II) that exhibited distinct distributions among waters with lower and higher water-rock reaction (i.e., serpentinization influence), respectively. Metabolic reconstructions revealed contrasting core metabolic pathways of type I and II Acetothermia, including in acetogenic pathway components (e.g., bacterial- vs. archaeal-like carbon monoxide dehydrogenases [CODH], respectively), hydrogen use to drive acetogenesis, and chemiosmotic potential generation via respiratory (type I) or canonical acetogen ferredoxin-based complexes (type II). Notably, type II Acetothermia metabolic pathways allow for use of serpentinization-derived substrates and implicate them as key primary producers in contemporary hyperalkaline serpentinite environments. Phylogenomic analyses indicate that 1) archaeal-like CODH of the type II genomes and those of other serpentinite-associated Bacteria derive from a deeply rooted horizontal transfer or origin among archaeal methanogens and 2) Acetothermia are among the earliest evolving bacterial lineages. The discovery of dominant and early-branching acetogens in subsurface waters of the largest near-surface serpentinite formation provides insight into the physiological traits that likely facilitated rock-supported life to flourish on a primitive Earth and possibly on other rocky planets undergoing serpentinization.


Asunto(s)
Monóxido de Carbono , Ferredoxinas , Archaea/genética , Archaea/metabolismo , Bacterias/genética , Bacterias/metabolismo , Monóxido de Carbono/metabolismo , Ferredoxinas/metabolismo , Hidrógeno/metabolismo , Silicatos de Magnesio , Omán , Agua/metabolismo
3.
Microbiol Spectr ; 9(3): e0063121, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34756066

RESUMEN

The deep biosphere hosts uniquely adapted microorganisms overcoming geochemical extremes at significant depths within the crust of the Earth. Attention is required to understand the near subsurface and its continuity with surface systems, where numerous novel microbial members with unique physiological modifications remain to be identified. This surface-subsurface relationship raises key questions about networking of surface hydrology, geochemistry affecting near-subsurface microbial composition, and resiliency of subsurface ecosystems. Here, we apply molecular and geochemical approaches to determine temporal microbial composition and environmental conditions of filtered borehole fluid from the Edgar Experimental Mine (∼150 m below the surface) in Idaho Springs, CO. Samples were collected over a 4-year collection period from expandable packers deployed to accumulate fluid in previously drilled boreholes located centimeters to meters apart, revealing temporal evolution of borehole microbiology. Meteoric groundwater feeding boreholes demonstrated variable recharge rates likely due to a complex and undefined fracture system within the host rock. 16S rRNA gene analysis determined that unique microbial communities occupy the four boreholes examined. Two boreholes yielded sequences revealing the presence of Desulfosporosinus, Candidatus Nitrotoga, and Chelatococcus associated with endemic subsurface communities. Two other boreholes presented sequences related to nonsubsurface-originating microbiota. High concentration of sulfate along with detected sulfur reducing and oxidizing microorganisms suggests that sulfur related metabolic strategies are prominent within these near-subsurface boreholes. Overall, results indicate that microbial community composition in the near-subsurface is highly dynamic at very fine spatial scales (<20 cm) within fluid-rock equilibrated boreholes, which additionally supports the role of a relationship for surface geochemical processes infiltrating and influencing subsurface environments. IMPORTANCE The Edgar Experimental Mine, Idaho Springs, CO, provides inexpensive and open access to borehole investigations for subsurface microbiology studies. Understanding how microbial processes in the near subsurface are connected to surface hydrological influences is lacking. Investigating microbial communities of subsurface mine boreholes provides evidence of how geochemical processes are linked to biogeochemical processes within each borehole and the geochemical connectedness and mobility of surface influences. This study details microbial community composition and fluid geochemistry over spatial and temporal scales from boreholes within the Edgar Mine. These findings are relevant to biogeochemistry of near-surface mines, caves, and other voids across planetary terrestrial systems. In addition, this work can lead to understanding how microbial communities relate to both fluid-rock equilibration, and geochemical influences may enhance our understanding of subsurface molecular biological tools that aid mining economic practices to reflect biological signals for lucrative veins in the near subsurface.


Asunto(s)
Bacterias/aislamiento & purificación , Sedimentos Geológicos/microbiología , Agua Subterránea/microbiología , Microbiota , Bacterias/clasificación , Bacterias/genética , Biodiversidad , ADN Bacteriano/genética , Sedimentos Geológicos/química , Minería , Filogenia , ARN Ribosómico 16S/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...