Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Front Immunol ; 15: 1372272, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38638445

RESUMEN

Background: Tumors in the distal esophagus (EAC), gastro-esophageal junction including cardia (GEJAC), and stomach (GAC) develop in close proximity and show strong similarities on a molecular and cellular level. However, recent clinical data showed that the effectiveness of chemo-immunotherapy is limited to a subset of GEAC patients and that EACs and GEJACs generally benefit less from checkpoint inhibition compared to GACs. As the composition of the tumor immune microenvironment drives response to (immuno)therapy we here performed a detailed immune analysis of a large series of GEACs to facilitate the development of a more individualized immunomodulatory strategy. Methods: Extensive immunophenotyping was performed by 14-color flow cytometry in a prospective study to detail the immune composition of untreated gastro-esophageal cancers (n=104) using fresh tumor biopsies of 35 EACs, 38 GEJACs and 31 GACs. The immune cell composition of GEACs was characterized and correlated with clinicopathologic features such as tumor location, MSI and HER2 status. The spatial immune architecture of a subset of tumors (n=30) was evaluated using multiplex immunohistochemistry (mIHC) which allowed us to determine the tumor infiltration status of CD3+, CD8+, FoxP3+, CD163+ and Ki67+ cells. Results: Immunophenotyping revealed that the tumor immune microenvironment of GEACs is heterogeneous and that immune suppressive cell populations such as monocytic myeloid-derived suppressor cells (mMDSC) are more abundant in EACs compared to GACs (p<0.001). In contrast, GACs indicated a proinflammatory microenvironment with elevated frequencies of proliferating (Ki67+) CD4 Th cells (p<0.001), Ki67+ CD8 T cells (p=0.002), and CD8 effector memory-T cells (p=0.024). Differences between EACs and GACs were confirmed by mIHC analyses showing lower densities of tumor- and stroma-infiltrating Ki67+ CD8 T cells in EAC compared to GAC (both p=0.021). Discussions: This comprehensive immune phenotype study of a large series of untreated GEACs, identified that tumors with an esophageal tumor location have more immune suppressive features compared to tumors in the gastro-esophageal junction or stomach which might explain the location-specific responses to checkpoint inhibitors in this disease. These findings provide an important rationale for stratification according to tumor location in clinical studies and the development of location-dependent immunomodulatory treatment approaches.


Asunto(s)
Adenocarcinoma , Neoplasias Esofágicas , Humanos , Antígeno Ki-67/genética , Estudios Prospectivos , Neoplasias Esofágicas/patología , Unión Esofagogástrica/patología , Fenotipo , Microambiente Tumoral
2.
Aesthet Surg J Open Forum ; 6: ojae008, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38465196

RESUMEN

Background: The etiology of capsular contracture (CC), the most common complication following breast augmentation, remains unclear. Chronic, fibrotic inflammation resulting in excessive fibrosis has been proposed as a potential mechanism. Objectives: In this study, we aimed to investigate the relation between biomarkers that are associated with inflammation and fibrosis and the severity of CC. Methods: Fifty healthy females were categorized into 3 groups: females with no-to-mild CC (Baker 1-2; n = 15), females with severe CC (Baker 3-4; n = 20), and a control group awaiting breast augmentation (n = 15). We assessed 5 biomarkers (galectin-1 [Gal-1], interferon-ß [INF-ß], interferon-γ [INF-γ], interleukin-6 [IL-6], and tumor necrosis factor-α [TNF-α]) in breast implant capsules and serum samples. Results: No significant differences in intracapsular cytokine levels were observed between the Baker 1-2 and the Baker 3-4 groups, as the levels were generally low and, in some cases, almost undetectable. In the blood samples, no significant differences in Gal-1, INF-γ, IL-6, or TNF-α levels were found within the 3 groups. We identified significantly increased levels of INF-ß (P = .009) in the blood samples of females with severe CC, driven mainly by 3 extremely high values. Conclusions: The cytokines assessed in this study did not reflect the degree of CC among females with silicone breast implants. However, 3 females with severe CC, who all had prolonged silicone exposure, showed extremely elevated levels of INF-ß in their serum samples. This possible association between prolonged silicone exposure and systemic inflammation in some females should be further investigated.

3.
BMC Cancer ; 23(1): 419, 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37161377

RESUMEN

BACKGROUND: Partial breast irradiation (PBI) is standard of care in low-risk breast cancer patients after breast-conserving surgery (BCS). Pre-operative PBI can result in tumor downstaging and more precise target definition possibly resulting in less treatment-related toxicity. This study aims to assess the pathologic complete response (pCR) rate one year after MR-guided single-dose pre-operative PBI in low-risk breast cancer patients. METHODS: The ABLATIVE-2 trial is a multicenter prospective single-arm trial using single-dose ablative PBI in low-risk breast cancer patients. Patients ≥ 50 years with non-lobular invasive breast cancer ≤ 2 cm, grade 1 or 2, estrogen receptor-positive, HER2-negative, and tumor-negative sentinel node procedure are eligible. A total of 100 patients will be enrolled. PBI treatment planning will be performed using a radiotherapy planning CT and -MRI in treatment position. The treatment delivery will take place on a conventional or MR-guided linear accelerator. The prescribed radiotherapy dose is a single dose of 20 Gy to the tumor, and 15 Gy to the 2 cm of breast tissue surrounding the tumor. Follow-up MRIs, scheduled at baseline, 2 weeks, 3, 6, 9, and 12 months after PBI, are combined with liquid biopsies to identify biomarkers for pCR prediction. BCS will be performed 12 months after radiotherapy or after 6 months, if MRI does not show a radiologic complete response. The primary endpoint is the pCR rate after PBI. Secondary endpoints are radiologic response, toxicity, quality of life, cosmetic outcome, patient distress, oncological outcomes, and the evaluation of biomarkers in liquid biopsies and tumor tissue. Patients will be followed up to 10 years after radiation therapy. DISCUSSION: This trial will investigate the pathological tumor response after pre-operative single-dose PBI after 12 months in patients with low-risk breast cancer. In comparison with previous trial outcomes, a longer interval between PBI and BCS of 12 months is expected to increase the pCR rate of 42% after 6-8 months. In addition, response monitoring using MRI and biomarkers will help to predict pCR. Accurate pCR prediction will allow omission of surgery in future patients. TRIAL REGISTRATION: The trial was registered prospectively on April 28th 2022 at clinicaltrials.gov (NCT05350722).


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/radioterapia , Estudios Prospectivos , Calidad de Vida , Biopsia Líquida , Imagen por Resonancia Magnética , Estudios Multicéntricos como Asunto
4.
Angiogenesis ; 26(2): 279-293, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36459240

RESUMEN

PURPOSE: Ongoing angiogenesis renders the tumor endothelium unresponsive to inflammatory cytokines and interferes with adhesion of leukocytes, resulting in escape from immunity. This process is referred to as tumor endothelial cell anergy. We aimed to investigate whether anti-angiogenic agents can overcome endothelial cell anergy and provide pro-inflammatory conditions. EXPERIMENTAL DESIGN: Tissues of renal cell carcinoma (RCC) patients treated with VEGF pathway-targeted drugs and control tissues were subject to RNAseq and immunohistochemical profiling of the leukocyte infiltrate. Analysis of adhesion molecule regulation in cultured endothelial cells, in a preclinical model and in human tissues was performed and correlated to leukocyte infiltration. RESULTS: It is shown that treatment of RCC patients with the drugs sunitinib or bevacizumab overcomes tumor endothelial cell anergy. This treatment resulted in an augmented inflammatory state of the tumor, characterized by enhanced infiltration of all major leukocyte subsets, including T cells, regulatory T cells, macrophages of both M1- and M2-like phenotypes and activated dendritic cells. In vitro, exposure of angiogenic endothelial cells to anti-angiogenic drugs normalized ICAM-1 expression. In addition, a panel of tyrosine kinase inhibitors was shown to increase transendothelial migration of both non-adherent and monocytic leukocytes. In primary tumors of RCC patients, ICAM-1 expression was found to be significantly increased in both the sunitinib and bevacizumab-treated groups. Genomic analysis confirmed the correlation between increased immune cell infiltration and ICAM-1 expression upon VEGF-targeted treatment. CONCLUSION: The results support the emerging concept that anti-angiogenic therapy can boost immunity and show how immunotherapy approaches can benefit from combination with anti-angiogenic compounds.


Asunto(s)
Inhibidores de la Angiogénesis , Carcinoma de Células Renales , Células Endoteliales , Neoplasias Renales , Neovascularización Patológica , Humanos , Bevacizumab/inmunología , Bevacizumab/farmacología , Bevacizumab/uso terapéutico , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/inmunología , Carcinoma de Células Renales/patología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/inmunología , Células Endoteliales/patología , Endotelio/efectos de los fármacos , Endotelio/inmunología , Endotelio/patología , Molécula 1 de Adhesión Intercelular/inmunología , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/inmunología , Neoplasias Renales/patología , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/inmunología , Neovascularización Patológica/patología , Sunitinib/inmunología , Sunitinib/farmacología , Sunitinib/uso terapéutico , Factor A de Crecimiento Endotelial Vascular/inmunología , Tolerancia Inmunológica/efectos de los fármacos , Tolerancia Inmunológica/inmunología , Invasividad Neoplásica/inmunología , Inflamación/tratamiento farmacológico , Inflamación/inmunología , Inflamación/patología , Inhibidores de la Angiogénesis/inmunología , Inhibidores de la Angiogénesis/farmacología , Inhibidores de la Angiogénesis/uso terapéutico
5.
Cancers (Basel) ; 14(23)2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36497271

RESUMEN

Esophageal cancer is a disease with poor overall survival. Despite advancements in therapeutic options, the treatment outcome of esophageal cancer patients remains dismal with an overall 5-year survival rate of approximately 20 percent. To improve treatment efficacy and patient survival, efforts are being made to identify the factors that underlie disease progression and that contribute to poor therapeutic responses. It has become clear that some of these factors reside in the tumor micro-environment. In particular, the tumor vasculature and the tumor immune micro-environment have been implicated in esophageal cancer progression and treatment response. Interestingly, galectins represent a family of glycan-binding proteins that has been linked to both tumor angiogenesis and tumor immunosuppression. Indeed, in several cancer types, galectins have been identified as diagnostic and/or prognostic markers. However, the role of galectins in esophageal cancer is still poorly understood. Here, we summarize the current literature with regard to the expression and potential functions of galectins in esophageal cancer. In addition, we highlight the gaps in the current knowledge and we propose directions for future research in order to reveal whether galectins contribute to esophageal cancer progression and provide opportunities to improve the treatment and survival of esophageal cancer patients.

6.
Cells ; 11(21)2022 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-36359732

RESUMEN

Pancreatic Ductal Adenocarcinoma (PDAC) is among the most aggressive human cancers and occurs globally at an increasing incidence. Metastases are the primary cause of cancer-related death and, in the majority of cases, PDAC is accompanied by metastatic disease at the time of diagnosis, making it a particularly lethal cancer. Regrettably, to date, no curative treatment has been developed for patients with metastatic disease, resulting in a 5-year survival rate of only 11%. We previously found that the protein expression of the transcription factor CCAAT/Enhancer-Binding Protein Delta (C/EBPδ) negatively correlates with lymph node involvement in PDAC patients. To better comprehend the etiology of metastatic PDAC, we explored the role of C/EBPδ at different steps of the metastatic cascade, using established in vitro models. We found that C/EBPδ has a major impact on cell motility, an important prerequisite for tumor cells to leave the primary tumor and to reach distant sites. Our data suggest that C/EBPδ induces downstream pathways that modulate actin cytoskeleton dynamics to reduce cell migration and to induce a more epithelial-like cellular phenotype. Understanding the mechanisms dictating epithelial and mesenchymal features holds great promise for improving the treatment of PDAC.


Asunto(s)
Proteína delta de Unión al Potenciador CCAAT , Carcinoma Ductal Pancreático , Movimiento Celular , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/genética , Proteína delta de Unión al Potenciador CCAAT/genética , Proteína delta de Unión al Potenciador CCAAT/metabolismo , Movimiento Celular/genética , Neoplasias Pancreáticas/genética , Factores de Transcripción/metabolismo , Neoplasias Pancreáticas
7.
Biomolecules ; 12(9)2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-36139125

RESUMEN

Galectins, a family of glycan-binding proteins, are well-known for their role in shaping the immune microenvironment. They can directly affect the activity and survival of different immune cell subtypes. Recent evidence suggests that galectins also indirectly affect the immune response by binding to members of another immunoregulatory protein family, i.e., cytokines. Such galectin-cytokine heterodimers, here referred to as galectokines, add a new layer of complexity to the regulation of immune homeostasis. Here, we summarize the current knowledge with regard to galectokine formation and function. We describe the known and potential mechanisms by which galectokines can help to shape the immune microenvironment. Finally, the outstanding questions and challenges for future research regarding the role of galectokines in immunomodulation are discussed.


Asunto(s)
Citocinas , Galectinas , Citocinas/metabolismo , Galectinas/metabolismo , Inmunidad , Inmunomodulación , Polisacáridos/metabolismo
8.
Ther Adv Med Oncol ; 14: 17588359221109196, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35782751

RESUMEN

Purpose: Regorafenib monotherapy, a multikinase inhibitor of angiogenesis, tumor microenvironment, and tumorigenesis, showed promising results in gastric cancer. We aimed to assess the tolerability of regorafenib and paclitaxel in patients with advanced esophagogastric cancer (EGC) refractory to first-line treatment, and explore potential biomarkers. Methods: Patients received paclitaxel (80 mg/m2) on days 1, 8, and 15 of a 28-day cycle and regorafenib (80/120/160 mg) on days 1-21 in the dose-escalation cohort, and the maximum-tolerated dose (MTD) in the dose-expansion cohort. Exploratory, overall survival (OS) and progression-free survival (PFS) were compared to a propensity-score matched cohort receiving standard second-/third-line systemic treatment. Paclitaxel pharmacokinetics were assessed using samples from day 1 (D1) and day 15 (D15). We performed enzyme-linked immunosorbent assay measurements of galectin-1, RNA sequencing, and shallow whole-genome sequencing of metastatic tumor biopsies for biomarker analyses. Results: In the dose-escalation cohort (n = 14), the MTD of regorafenib was 120 mg. In all, 34 patients were enrolled in the dose-expansion cohort. Most common toxicities (all grades; grade ⩾ 3) were fatigue (79%; 4%) and sensory neuropathy (63%; 4%). Best responses achieved were partial response (28%) and stable disease (54%). Median OS and PFS were 7.8 and 4.2 months, respectively (median follow-up: 7.8 months). OS (p = 0.08) and PFS (p = 0.81) were not significantly improved compared to the matched cohort. Paclitaxel concentrations were significantly increased with regorafenib (D15) compared with paclitaxel only (D1; p < 0.05); no associations were observed with toxicity or efficacy. An increase in circulating galectin-1 compared to baseline was associated with shorter OS (p < 0.01). Enrichment of angiogenesis-related gene expression was observed in short survivors measured by RNA sequencing. Chromosome 19q13.12-q13.2 amplification was associated with shorter OS (p = 0.02) and PFS (p = 0.02). Conclusion: Treatment with regorafenib and paclitaxel is tolerable and shows promising efficacy in advanced EGC refractory to first-line treatment. Galectin-1 and chromosome 19q13.12-q13.2 amplification could serve as negative predictive biomarkers for treatment response. Registration: Clinicaltrials.gov, NCT02406170, https://clinicaltrials.gov/ct2/show/NCT02406170.

9.
J Photochem Photobiol B ; 234: 112500, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35816857

RESUMEN

BACKGROUND AND AIM: A photosensitizer (PS) delivery and comprehensive tumor targeting platform was developed that is centered on the photosensitization of key pharmacological targets in solid tumors (cancer cells, tumor vascular endothelium, and cellular and non-cellular components of the tumor microenvironment) before photodynamic therapy (PDT). Interstitially targeted liposomes (ITLs) encapsulating zinc phthalocyanine (ZnPC) and aluminum phthalocyanine (AlPC) were formulated for passive targeting of the tumor microenvironment. In previous work it was established that the PEGylated ITLs were taken up by cultured cholangiocarcinoma cells. The aim of this study was to verify previous results in cancer cells and to determine whether the ITLs can also be used to photosensitize cells in the tumor microenvironment and vasculature. Following positive results, rudimentary in vitro and in vivo experiments were performed with ZnPC-ITLs and AlPC-ITLs as well as their water-soluble tetrasulfonated derivatives (ZnPCS4 and AlPCS4) to assemble a research dossier and bring this platform closer to clinical transition. METHODS: Flow cytometry and confocal microscopy were employed to determine ITL uptake and PS distribution in cholangiocarcinoma (SK-ChA-1) cells, endothelial cells (HUVECs), fibroblasts (NIH-3T3), and macrophages (RAW 264.7). Uptake of ITLs by endothelial cells was verified under flow conditions in a flow chamber. Dark toxicity and PDT efficacy were determined by cell viability assays, while the mode of cell death and cell cycle arrest were assayed by flow cytometry. In vivo systemic toxicity was assessed in zebrafish and chicken embryos, whereas skin phototoxicity was determined in BALB/c nude mice. A PDT efficacy pilot was conducted in BALB/c nude mice bearing human triple-negative breast cancer (MDA-MB-231) xenografts. RESULTS: The key findings were that (1) photodynamically active PSs (i.e., all except ZnPCS4) were able to effectively photosensitize cancer cells and non-cancerous cells; (2) following PDT, photodynamically active PSs were highly toxic-to-potent as per anti-cancer compound classification; (3) the photodynamically active PSs did not elicit notable systemic toxicity in zebrafish and chicken embryos; (4) ITL-delivered ZnPC and ZnPCS4 were associated with skin phototoxicity, while the aluminum-containing PSs did not exert detectable skin phototoxicity; and (5) ITL-delivered ZnPC and AlPC were equally effective in their tumor-killing capacity in human tumor breast cancer xenografts and superior to other non-phthalocyanine PSs when appraised on a per mole administered dose basis. CONCLUSIONS: AlPC(S4) are the safest and most effective PSs to integrate into the comprehensive tumor targeting and PS delivery platform. Pending further in vivo validation, these third-generation PSs may be used for multi-compartmental tumor photosensitization.


Asunto(s)
Colangiocarcinoma , Compuestos Organometálicos , Fotoquimioterapia , Animales , Línea Celular Tumoral , Embrión de Pollo , Células Endoteliales , Humanos , Liposomas , Ratones , Ratones Desnudos , Compuestos Organometálicos/farmacología , Compuestos Organometálicos/uso terapéutico , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Microambiente Tumoral , Pez Cebra
10.
Methods Mol Biol ; 2442: 621-633, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35320549

RESUMEN

Angiogenesis is a complex multi-step process involving various activities of endothelial cells. These activities are influenced in vivo by environmental conditions like interactions with other cell types and the microenvironment. Galectins play a role in several of these interactions and are therefore required for proper execution of in vivo angiogenesis. This chapter describes a method to study galectins during physiologic and pathophysiologic angiogenesis in vivo using the chicken chorioallantoic membrane (CAM) assay.


Asunto(s)
Galectinas , Neovascularización Patológica , Neovascularización Fisiológica , Animales , Bioensayo , Pollos , Membrana Corioalantoides , Células Endoteliales , Galectinas/fisiología , Neovascularización Patológica/fisiopatología , Neovascularización Fisiológica/fisiología
11.
Methods Mol Biol ; 2442: 655-662, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35320551

RESUMEN

The growth of new blood vessels is a key event in many (patho) physiological processes, including embryogenesis, wound healing, inflammatory diseases, and cancer. Neovascularization requires different, well-coordinated actions of endothelial cells, i.e., the cells lining the luminal side of all blood vessels. Galectins are involved in several of these activities. In this chapter, we describe methods to study galectins in three key functions of endothelial cells during angiogenesis, i.e., endothelial cell migration, endothelial cell sprouting, and endothelial cell network formation.


Asunto(s)
Células Endoteliales , Galectinas , Neovascularización Fisiológica , Movimiento Celular , Células Endoteliales/fisiología , Galectinas/antagonistas & inhibidores , Galectinas/fisiología , Humanos
13.
Cancer Immunol Immunother ; 71(8): 2029-2040, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35018481

RESUMEN

Galectin-1 (Gal1) is a glycan-binding protein that promotes tumor progression by several distinct mechanisms. Through direct binding to vascular endothelial growth factor (VEGF)-receptor 2, Gal1 is able to induce VEGF-like signaling, which contributes to tumor angiogenesis. Furthermore, several studies have demonstrated an immunosuppressive function of Gal1 through effects on both effector and regulatory T cells. Elevated Gal1 expression and secretion have been shown in many tumor types, and high Gal1 serum levels have been connected to poor prognosis in cancer patients. These findings suggest that therapeutic strategies directed against Gal1 would enable simultaneous targeting of angiogenesis, immune evasion and metastasis. In the current study, we have analyzed the potential of Gal1 as a cancer vaccine target. We show that it is possible to generate high anti-Gal1 antibody levels in mice immunized with a recombinant vaccine protein consisting of bacterial sequences fused to Gal1. Growth of Gal1 expressing melanomas was significantly impaired in the immunized mice compared to the control group. This was associated with improved perfusion of the tumor vasculature, as well as increased infiltration of macrophages and cytotoxic T cells (CTLs). The level of granzyme B, mainly originating from CTLs in our model, was significantly elevated in Gal1 vaccinated mice and correlated with a decrease in tumor burden. We conclude that vaccination against Gal1 is a promising pro-immunogenic approach for cancer therapy that could potentially enhance the effect of other immunotherapeutic strategies due to its ability to promote CTL influx in tumors.


Asunto(s)
Vacunas contra el Cáncer , Galectina 1 , Melanoma , Carga Tumoral , Animales , Vacunas contra el Cáncer/inmunología , Galectina 1/metabolismo , Melanoma/terapia , Ratones , Neovascularización Patológica , Linfocitos T Citotóxicos/metabolismo , Vacunación
14.
Commun Biol ; 4(1): 1415, 2021 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-34931005

RESUMEN

Galectins are versatile glycan-binding proteins involved in immunomodulation. Evidence suggests that galectins can control the immunoregulatory function of cytokines and chemokines through direct binding. Here, we report on an inverse mechanism in which chemokines control the immunomodulatory functions of galectins. We show the existence of several specific galectin-chemokine binding pairs, including galectin-1/CXCL4. NMR analyses show that CXCL4 binding induces changes in the galectin-1 carbohydrate binding site. Consequently, CXCL4 alters the glycan-binding affinity and specificity of galectin-1. Regarding immunomodulation, CXCL4 significantly increases the apoptotic activity of galectin-1 on activated CD8+ T cells, while no effect is observed in CD4+ T cells. The opposite is found for another galectin-chemokine pair, i.e., galectin-9/CCL5. This heterodimer significantly reduces the galectin-9 induced apoptosis of CD4+ T cells and not of CD8+ T cells. Collectively, the current study describes an immunomodulatory mechanism in which specific galectin-chemokine interactions control the glycan-binding activity and immunoregulatory function of galectins.


Asunto(s)
Quimiocina CXCL5/metabolismo , Galectina 1/metabolismo , Galectinas/metabolismo , Inmunomodulación , Factor Plaquetario 4/metabolismo , Polisacáridos/metabolismo , Humanos , Células Jurkat
15.
Biomolecules ; 11(9)2021 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-34572599

RESUMEN

Angiogenesis, the growth of new blood vessels out of existing vessels, is a complex and tightly regulated process. It is executed by the cells that cover the inner surface of the vasculature, i.e., the endothelial cells. During angiogenesis, these cells adopt different phenotypes, which allows them to proliferate and migrate, and to form tube-like structures that eventually result in the generation of a functional neovasculature. Multiple internal and external cues control these processes and the galectin protein family was found to be indispensable for proper execution of angiogenesis. Over the last three decades, several members of this glycan-binding protein family have been linked to endothelial cell functioning and to different steps of the angiogenesis cascade. This review provides a basic overview of our current knowledge regarding galectins in angiogenesis. It covers the main findings with regard to the endothelial expression of galectins and highlights their role in endothelial cell function and biology.


Asunto(s)
Células Endoteliales/metabolismo , Galectinas/metabolismo , Neovascularización Fisiológica , Animales , Galectinas/química , Humanos , Modelos Biológicos
16.
J Exp Clin Cancer Res ; 40(1): 161, 2021 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-33964942

RESUMEN

BACKGROUND: Improvement of radiotherapy efficacy requires better insight in the dynamic responses that occur during irradiation. Here, we aimed to identify the molecular responses that are triggered during clinically applied fractionated irradiation. METHODS: Gene expression analysis was performed by RNAseq or microarray analysis of cancer cells or xenograft tumors, respectively, subjected to 3-5 weeks of 5 × 2 Gy/week. Validation of altered gene expression was performed by qPCR and/or ELISA in multiple cancer cell lines as well as in pre- and on-treatment biopsies from esophageal cancer patients ( NCT02072720 ). Targeted protein inhibition and CRISPR/Cas-induced gene knockout was used to analyze the role of type I interferons and cGAS/STING signaling pathway in the molecular and cellular response to fractionated irradiation. RESULTS: Gene expression analysis identified type I interferon signaling as the most significantly enriched biological process induced during fractionated irradiation. The commonality of this response was confirmed in all irradiated cell lines, the xenograft tumors and in biopsies from esophageal cancer patients. Time-course analyses demonstrated a peak in interferon-stimulated gene (ISG) expression within 2-3 weeks of treatment. The response was accompanied by a variable induction of predominantly interferon-beta and/or -lambda, but blocking these interferons did not affect ISG expression induction. The same was true for targeted inhibition of the upstream regulatory STING protein while knockout of STING expression only delayed the ISG expression induction. CONCLUSIONS: Collectively, the presented data show that clinically applied fractionated low-dose irradiation can induce a delayed type I interferon response that occurs independently of interferon expression or STING signaling. These findings have implications for current efforts that aim to target the type I interferon response for cancer treatment.


Asunto(s)
Neoplasias Esofágicas/radioterapia , Regulación Neoplásica de la Expresión Génica/efectos de la radiación , Interferón Tipo I/genética , Proteínas de la Membrana/genética , Animales , Astrocitoma/genética , Astrocitoma/inmunología , Astrocitoma/metabolismo , Astrocitoma/radioterapia , Línea Celular Tumoral , Neoplasias del Colon/genética , Neoplasias del Colon/inmunología , Neoplasias del Colon/metabolismo , Neoplasias del Colon/radioterapia , Fraccionamiento de la Dosis de Radiación , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/inmunología , Neoplasias Esofágicas/metabolismo , Femenino , Células HT29 , Humanos , Inmunidad/efectos de la radiación , Interferón Tipo I/inmunología , Interferón Tipo I/metabolismo , Proteínas de la Membrana/inmunología , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Distribución Aleatoria , Ensayos Antitumor por Modelo de Xenoinjerto
17.
PLoS One ; 16(1): e0244736, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33411760

RESUMEN

Galectin-1 (gal-1) is a carbohydrate-binding lectin with important functions in angiogenesis, immune response, hemostasis and inflammation. Comparable functions are exerted by platelet factor 4 (CXCL4), a chemokine stored in the α-granules of platelets. Previously, gal-1 was found to activate platelets through integrin αIIbß3. Both gal-1 and CXCL4 have high affinities for polysaccharides, and thus may mutually influence their functions. The aim of this study was to investigate a possible synergism of gal-1 and CXCL4 in platelet activation. Platelets were treated with increasing concentrations of gal-1, CXCL4 or both, and aggregation, integrin activation, P-selectin and phosphatidyl serine (PS) exposure were determined by light transmission aggregometry and by flow cytometry. To investigate the influence of cell surface sialic acid, platelets were treated with neuraminidase prior to stimulation. Gal-1 and CXCL4 were found to colocalize on the platelet surface. Stimulation with gal-1 led to integrin αIIbß3 activation and to robust platelet aggregation, while CXCL4 weakly triggered aggregation and primarily induced P-selectin expression. Co-incubation of gal-1 and CXCL4 potentiated platelet aggregation compared with gal-1 alone. Whereas neither gal-1 and CXCL4 induced PS-exposure on platelets, prior removal of surface sialic acid strongly potentiated PS exposure. In addition, neuraminidase treatment increased the binding of gal-1 to platelets and lowered the activation threshold for gal-1. However, CXCL4 did not affect binding of gal-1 to platelets. Taken together, stimulation of platelets with gal-1 and CXCL4 led to distinct and complementary activation profiles, with additive rather than synergistic effects.


Asunto(s)
Plaquetas/efectos de los fármacos , Galectina 1/farmacología , Activación Plaquetaria/efectos de los fármacos , Factor Plaquetario 4/farmacología , Plaquetas/metabolismo , Humanos , Ácido N-Acetilneuramínico/metabolismo , Agregación Plaquetaria/efectos de los fármacos , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/metabolismo , Transducción de Señal/efectos de los fármacos
18.
Mol Oncol ; 15(4): 901-914, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33506581

RESUMEN

Identification of molecular predictive markers of response to neoadjuvant chemoradiation could aid clinical decision-making in patients with localized oesophageal cancer. Therefore, we subjected pretreatment biopsies of 75 adenocarcinoma (OAC) and 16 squamous cell carcinoma (OSCC) patients to targeted next-generation DNA sequencing, as well as biopsies of 85 OAC and 20 OSCC patients to promoter methylation analysis of eight GI-specific genes, and subsequently searched for associations with histopathological response and disease-free (DFS) and overall survival (OS). Thereby, we found that in OAC, CSMD1 deletion (8%) and ETV4 amplification (5%) were associated with a favourable histopathological response, whereas SMURF1 amplification (5%) and SMARCA4 mutation (7%) were associated with an unfavourable histopathological response. KRAS (15%) and GATA4 (7%) amplification were associated with shorter OS. In OSCC, TP63 amplification (25%) and TFPI2 (10%) gene promoter methylation were associated with an unfavourable histopathological response and shorter DFS (TP63) and OS (TFPI2), whereas CDKN2A deletion (38%) was associated with prolonged OS. In conclusion, this study identified candidate genetic biomarkers associated with response to neoadjuvant chemoradiotherapy in patients with localized oesophageal cancer.


Asunto(s)
Neoplasias Esofágicas/tratamiento farmacológico , Terapia Neoadyuvante , Medicina de Precisión , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/genética , Adulto , Anciano , Anciano de 80 o más Años , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/genética , Islas de CpG , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , ADN Helicasas/genética , Metilación de ADN , Supervivencia sin Enfermedad , Neoplasias Esofágicas/genética , Femenino , Factor de Transcripción GATA4/genética , Glicoproteínas/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Persona de Mediana Edad , Países Bajos , Proteínas Nucleares/genética , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas p21(ras)/genética , Factores de Transcripción/genética , Proteínas Supresoras de Tumor/genética , Ubiquitina-Proteína Ligasas/genética
19.
Radiother Oncol ; 148: 107-114, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32344261

RESUMEN

BACKGROUND AND PURPOSE: Effective combination treatments with fractionated radiotherapy rely on a proper understanding of the dynamic responses that occur during treatment. We explored the effect of clinical fractionated radiotherapy on the development and timing of radioresistance in tumor cells. METHODS AND MATERIALS: Different colon (HT29/HCT116/COLO320/SW480/RKO) and high-grade astrocytoma (D384/U-251MG) cancer cell lines were treated for 6 weeks with daily fractions of 2 Gy, 5 days per week. Clonogenic survival was determined throughout the treatment period. In addition, the radiosensitivity of irradiated and non-irradiated was compared. Finally, the effect of different dose fractions on the development of radioresistance was determined. RESULTS: All cell lines developed radioresistance within 2-3 weeks during fractionated radiotherapy. This was characterized by the occurrence of a steady state phase of clonogenic survival. In U-251MG cells this was accompanied by increased cell senescence and stemness. After recovering from six weeks of treatment, the radiosensitivity of fractionally irradiated and non-irradiated cells was similar. Including transient radioresistance, described as (α/ß)-(d+1), as a factor in the classic LQ model resulted in a perfect fit with the experimental data observed during fractionated radiotherapy. This was confirmed when different dose fractions were applied. CONCLUSIONS: Fractionated irradiation of cancer cells in vitro following clinical radiation schedules induces a reversible radioresistance response. This adaptive response can be included in the LQ model as a function of the dose fraction and the alpha/beta-ratio of a given cell line. These findings warrant further investigation of the mechanisms and clinical relevance of adaptive radioresistance.


Asunto(s)
Neoplasias , Tolerancia a Radiación , Supervivencia Celular , Humanos
20.
Int J Radiat Oncol Biol Phys ; 108(1): 56-69, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32068114

RESUMEN

Radiation therapy has been linked to the induction of an intratumoral type I interferon (IFN) response, which positively affects the response to treatment. This has spiked the interest to combine radiation therapy with IFN-based treatment. Interestingly, this combination treatment has been considered previously, since preclinical studies demonstrated a radiosensitizing effect of interferons. As a result, multiple clinical trials have been performed combining radiation therapy with interferons in different tumor types. Although potential benefit has been suggested, the outcomes of the trials are diverse and challenging to interpret. In addition, increased grade ≥3 toxicity frequently resulted in a negative recommendation regarding the combination therapy. The latter appears premature because many studies were small and several aspects of the combination treatment have not yet been sufficiently explored to justify such a definite conclusion. This review summarizes the available literature on this combination therapy, with a focus on IFN-α and IFN-ß. Based on preclinical studies and clinical trials, we evaluated the potential opportunities and describe the current challenges. In addition, we identify several issues that should be addressed to fully exploit the potential benefit of this combinatorial treatment approach.


Asunto(s)
Interferones/farmacología , Neoplasias/tratamiento farmacológico , Neoplasias/radioterapia , Animales , Terapia Combinada , Humanos , Interferones/uso terapéutico , Neoplasias/inmunología , Neoplasias/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA