Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Chem Phys ; 159(14)2023 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-37811828

RESUMEN

Metal-reducing bacteria have adapted the ability to respire extracellular solid surfaces instead of soluble oxidants. This process requires an electron transport pathway that spans from the inner membrane, across the periplasm, through the outer membrane, and to an external surface. Multiheme cytochromes are the primary machinery for moving electrons through this pathway. Recent studies show that the chiral-induced spin selectivity (CISS) effect is observable in some of these proteins extracted from the model metal-reducing bacteria, Shewanella oneidensis MR-1. It was hypothesized that the CISS effect facilitates efficient electron transport in these proteins by coupling electron velocity to spin, thus reducing the probability of backscattering. However, these studies focused exclusively on the cell surface electron conduits, and thus, CISS has not been investigated in upstream electron transfer components such as the membrane-associated MtrA, or periplasmic proteins such as small tetraheme cytochrome (STC). By using conductive probe atomic force microscopy measurements of protein monolayers adsorbed onto ferromagnetic substrates, we show that electron transport is spin selective in both MtrA and STC. Moreover, we have determined the spin polarization of MtrA to be ∼77% and STC to be ∼35%. This disparity in spin polarizations could indicate that spin selectivity is length dependent in heme proteins, given that MtrA is approximately two times longer than STC. Most significantly, our study indicates that spin-dependent interactions affect the entire extracellular electron transport pathway.


Asunto(s)
Electrones , Periplasma , Transporte de Electrón , Oxidación-Reducción , Periplasma/metabolismo , Metales , Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo
2.
Front Microbiol ; 11: 1344, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32714295

RESUMEN

Biophotovoltaic devices utilize photosynthetic organisms such as the model cyanobacterium Synechocystis sp. PCC 6803 (Synechocystis) to generate current for power or hydrogen production from light. These devices have been improved by both architecture engineering and genetic engineering of the phototrophic organism. However, genetic approaches are limited by lack of understanding of cellular mechanisms of electron transfer from internal metabolism to the cell exterior. Type IV pili have been implicated in extracellular electron transfer (EET) in some species of heterotrophic bacteria. Furthermore, conductive cell surface filaments have been reported for cyanobacteria, including Synechocystis. However, it remains unclear whether these filaments are type IV pili and whether they are involved in EET. Herein, a mediatorless electrochemical setup is used to compare the electrogenic output of wild-type Synechocystis to that of a ΔpilD mutant that cannot produce type IV pili. No differences in photocurrent, i.e., current in response to illumination, are detectable. Furthermore, measurements of individual pili using conductive atomic force microscopy indicate these structures are not conductive. These results suggest that pili are not required for EET by Synechocystis, supporting a role for shuttling of electrons via soluble redox mediators or direct interactions between the cell surface and extracellular substrates.

3.
Nanotechnology ; 31(12): 124001, 2020 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-31791015

RESUMEN

Geobacter sulfurreducens is an important model organism for understanding extracellular electron transfer (EET), i.e. transfer of electrons from the cell's interior (quinone pool) to an extracellular substrate. This exoelectrogenic functionality can be exploited in bioelectrochemical applications. Nonetheless, key questions remain regarding the mechanisms of this functionality. G. sulfurreducens has been hypothesized to employ both multi-heme cytochromes and soluble, small molecule redox shuttles, as the final, redox-active species in EET. However, interactions between flavin redox shuttles and outer membrane, redox proteins in Geobacter have not been demonstrated. Herein, the heterologous expression and purification from E. coli of a soluble form of the multi-heme cytochrome OmcZs from G. sulfurreducens is reported. UV-vis absorption assays show that riboflavin can be reduced by OmcZs with concomitant oxidation of the protein. Fluorescence assays show that oxidized OmcZs and riboflavin interact with a binding constant of 34 µM. Furthermore, expression of OmcZs in E. coli enables EET in the host, and the current produced by these E. coli in a bioelectrochemical cell increases when riboflavin is introduced. These results support the hypothesis that OmcZs functions in EET by transiently binding riboflavin, which shuttles electrons from the outer membrane to the extracellular substrate.


Asunto(s)
Grupo Citocromo c/genética , Grupo Citocromo c/metabolismo , Geobacter/metabolismo , Riboflavina/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Transporte de Electrón , Electrones , Geobacter/genética , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA