Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 344: 140340, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37778647

RESUMEN

Biosurfactants are surface active molecules generated by various microorganisms, including bacteria, actinobacteria, algae, and fungi. In this study, bacterial strains are isolated from soil contaminated with used motor oil and examined for potential biosurfactant production. A minimum salt medium (MSM), with crude oil as the only carbon source, is used to isolate potential biosurfactant-producing bacterial strains. About 23 strains are isolated, and all are subjected to the primary screening methods for biosurfactant production. Based on the emulsification index, oil displacement, and drop collapse screening methods, two isolates with potential biosurfactant-producing ability are selected for further studies. The synthesis of biosurfactants, crude oil and anthracene biodegradation is carried out with strains DTS1 and DTS2. Both strains show significant outcomes in crude oil degradation. In addition, both strains can utilize anthracene as the sole carbon source. During the degradation course, changes in the growth conditions are continuously monitored by measuring turbidity and pH. In this degradation study, the biosurfactant production aptitude of the isolated strains plays an essential role in increasing the bioavailability of hydrophobic hydrocarbons. These strains are identified down to the molecular level by employing 16S rRNA gene sequencing, and the acquired sequences are submitted to get the accession numbers. These prospective strains can be utilized to remediate hydrocarbon-contaminated environments.


Asunto(s)
Bacillus , Petróleo , Bacillus/metabolismo , Petróleo/análisis , ARN Ribosómico 16S/genética , Estudios Prospectivos , Tensoactivos/química , Bacterias/metabolismo , Hidrocarburos/metabolismo , Biodegradación Ambiental , Antracenos/metabolismo , Carbono/metabolismo
2.
Biomedicines ; 11(8)2023 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-37626781

RESUMEN

The utilization of nanoparticles derived from algae has generated increasing attention owing to their environmentally sustainable characteristics and their capacity to interact harmoniously with biologically active metabolites. The present study utilized P. boergesenii for the purpose of synthesizing copper oxide nanoparticles (CuONPs), which were subsequently subjected to in vitro assessment against various bacterial pathogens and cancer cells A375. The biosynthesized CuONPs were subjected to various analytical techniques including FTIR, XRD, HRSEM, TEM, and Zeta sizer analyses in order to characterize their stability and assess their size distribution. The utilization of Fourier Transform Infrared (FTIR) analysis has provided confirmation that the algal metabolites serve to stabilize the CuONPs and function as capping agents. The X-ray diffraction (XRD) analysis revealed a distinct peak associated with the (103) plane, characterized by its sharpness and high intensity, indicating its crystalline properties. The size of the CuONPs in the tetragonal crystalline structure was measured to be 76 nm, and they exhibited a negative zeta potential. The biological assay demonstrated that the CuONPs exhibited significant antibacterial activity when tested against both Bacillus subtilis and Escherichia coli. The cytotoxic effects of CuONPs and cisplatin, when tested at a concentration of 100 µg/mL on the A375 malignant melanoma cell line, were approximately 70% and 95%, respectively. The CuONPs that were synthesized demonstrated significant potential in terms of their antibacterial properties and their ability to inhibit the growth of malignant melanoma cells.

3.
Microb Pathog ; 183: 106324, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37633504

RESUMEN

Actinobacteria are gram-positive bacteria with high G:C ratio in their genetic makeup. They have been noted and studied for their capacity to produce bioactive substances with a range of uses in human health, and they also exhibit a unique property of adapting to extreme environments quite well. Actinobacteria may play an essential role in cancer prevention and treatment due to their synthesis of anticancer compounds, as indicated by recent studies. The aim of this review is to give a summary of what is currently known about the connection between actinobacteria and different types of cancer. This paper delineates the diverse array of actinobacterial bioactive compounds possessing anticancer properties, elucidates their mechanisms of action and explores potential applications in cancer treatment. Furthermore, this review highlights how the microbiome influences the onset and progression of cancer, as well as the discussing the potential benefits that actinobacteria may bring in terms of controlling the microbiome and contributing to the regulation of the tumour microenvironment to cure or prevent cancer.


Asunto(s)
Actinobacteria , Microbiota , Neoplasias , Humanos , Bacterias , Neoplasias/tratamiento farmacológico , Neoplasias/prevención & control
4.
Mitochondrial DNA A DNA Mapp Seq Anal ; 30(4): 682-693, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31181977

RESUMEN

Leucinodes orbonalis Guenée is serious quarantine pest occurring globally, studies are needed to enlighten the genetic complexities associated with the species. India is considered to be the origin of the L. orbonalis, therefore availability of species records from this region enable to analyse the genetic differences and dispersal of the lineages. The results of the study reported 47 haplotypes in four clusters pertaining to their ancestral lineage. The transition/transversion bias (R) was observed to be higher with 1.238 and 1.312 in the first and third codon positions respectively. The overall intraspecies divergence was found to be 0.302. AMOVA revealed that the total variations were then as reported 67.15 among the south-east countries but our studies reported the total variation to be 77.25% (Germany, India, South east and Australia). FST and Mantel's test indicated that there was no correlation between the genetic variation and geographical distance. The overall haplotype diversity was 0.852, where the nucleotide diversity of H31 (0.00593) was highest and H1 (0.00087) was lowest. The genetic diversity indices Tajima D and Fu's Fs static for H1, H13 and H31 had negative values which possibly inferred for the bottle neck effect. The ML tree was constituted the branch length of 5.0157 with one out-group. The tree was formed with ten distinctive clades with the haplotypes congregated together based on similar genetic composition.


Asunto(s)
Código de Barras del ADN Taxonómico , Variación Genética/genética , Mapeo Geográfico , Lepidópteros/clasificación , Lepidópteros/genética , Control de Plagas , Cuarentena , Animales , Especificidad de la Especie
5.
Microb Pathog ; 121: 166-172, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29775727

RESUMEN

Around 120 actinobacterial colonies were isolated from various regions of marine East coast region of Tamil Nadu, India. Among them, 33 were morphologically distinct and they were preliminarily screened for their antibacterial activity against Pseudomonas fluorescens, Vibrio cholerae, V. parahaemolyticus, V. alginolyticus, and Aeromonas hydrophila by cross-streak plate technique. Among the isolated, the isolate ECR64 exhibited maximum zone of inhibition against fish pathogenic bacteria. The crude bioactive compounds were extracted from the isolate ECR64 using different organic solvents which exhibited maximum antibacterial activity. Separation and purification of the bioactive compounds were made by column chromatography which yielded 27 fractions and were re-chromatographed to obtain the active compound. Ultra violet (UV), Fourier transform infrared (FT-IR) and nuclear magnetic resonance (NMR) spectral studies were used to predict the structure of the active compound which was identified as methyl-4,8-dimethylundecanate. The potential isolate ECR64 was identified as Streptomyces albogriseolus by phylogenetic, phenotypic and genotypic (16S rRNA gene sequence) analyses. The identified compound methyl-4,8-dimethylundecanate can be used as potential and alternative drug in disease management of aquaculture.


Asunto(s)
Antibacterianos/farmacología , Streptomyces/química , Aeromonas hydrophila/efectos de los fármacos , Aeromonas hydrophila/metabolismo , Animales , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Acuicultura , Enfermedades de los Peces/tratamiento farmacológico , Enfermedades de los Peces/microbiología , Peces/microbiología , India , Espectroscopía de Resonancia Magnética , Filogenia , Pseudomonas fluorescens/efectos de los fármacos , ARN Ribosómico 16S/genética , Espectroscopía Infrarroja por Transformada de Fourier , Vibrio alginolyticus/efectos de los fármacos , Vibrio cholerae/efectos de los fármacos , Vibrio parahaemolyticus/efectos de los fármacos
6.
Acta Trop ; 183: 84-91, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29625090

RESUMEN

Culex mosquitoes can act as vectors of several important diseases, including Japanese encephalitis, West Nile virus, St. Louis encephalitis and equine encephalitis. Besides the neurological sequelae caused in humans, Japanese encephalitis can lead to abortion in sows and encephalitis in horses. Effective vector control and early diagnosis, along with continuous serosurveillance in animals, are crucial to fight this arboviral disease. However, the success of vector control operations is linked with the fast and reliable identification of targeted species, and knowledge about their biology and ecology. Since the DNA barcoding of Culex vectors of Japanese encephalitis is scarcely explored, here we evaluated the efficacy of this tool to identify and analyze the variations among five overlooked Culex vectors of Japanese encephalitis, Culex fuscocephala, Culex gelidus, Culex tritaeniorhynchus, Culex pseudovishnui and Culex vishnui, relying to the analysis of mitochondrial CO1 gene. Variations in their base pair range were elucidated by the entropy Hx plot. The differences among individual conspecifics and on base pair range across the same were studied. The C (501-750 bp) region showed a moderate variation among all the selected species. C. tritaeniorhynchus exhibited the highest variation in all the ranges. The observed genetic divergence was partially non-discriminatory. i.e., the overall intra- and inter nucleotide divergence was 0.0920 (0.92%) and 0.125 (1.25%), respectively. However, 10X rule fits accurately intraspecies divergence <3% for the five selected Culex species. The analysis of individual scatter plots showed threshold values (10X) of 0.008 (0.08%), 0.005 (0.05%), 0.123 (1.23%), 0.033 (0.33%) and 0.019 (0.19%) for C. fuscocephala, C. gelidus, C. tritaeniorhynchus, C. pseudovishnui and C. vishnui, respectively. The C. tritaeniorhynchus haplotypes KU497604, KU497603, AB690847 and AB690854 exhibited the highest divergence range, i.e., from 0.465 -0.546. Comparatively, the intra-divergence among the other haplotypes of C. tritaeniorhynchus ranged from 0-0.056. The maximum parsimony tree was formed by distinctive conspecific clusters with appreciable branch values illustrating their close congruence and extensive genetic deviations. Overall, this study adds valuable knowledge to the molecular biology and systematics of five overlooked mosquito species acting as major vectors of Japanese encephalitis in Asian countries.


Asunto(s)
Culex/genética , Código de Barras del ADN Taxonómico , Encefalitis Japonesa/transmisión , Mosquitos Vectores/genética , Animales , Asia , Culex/fisiología , Ecología , Variación Genética , Haplotipos , Humanos , Mosquitos Vectores/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...