RESUMEN
A combination of inelastic neutron scattering (INS), far-IR magneto-spectroscopy (FIRMS), and Raman magneto-spectroscopy (RaMS) has been used to comprehensively probe magnetic excitations in Co(AsPh3)2I2 (1), a reported single-molecule magnet (SMM). With applied field, the magnetic zero-field splitting (ZFS) peak (2D') shifts to higher energies in each spectroscopy. INS placed the ZFS peak at 54 cm-1, as revealed by both variable-temperature (VT) and variable-magnetic-field data, giving results that agree well with those from both far-IR and Raman studies. Both FIRMS and RaMS also reveal the presence of multiple spin-phonon couplings as avoided crossings with neighboring phonons. Here, phonons refer to both intramolecular and lattice vibrations. The results constitute a rare case in which the spin-phonon couplings are observed with both Raman-active (g modes) and far-IR-active phonons (u modes; space group P21/c, no. 14, Z = 4 for 1). These couplings are fit using a simple avoided crossing model with coupling constants of ca. 1-2 cm-1. The combined spectroscopies accurately determine the magnetic excited level and the interaction of the magnetic excitation with phonon modes. Density functional theory (DFT) phonon calculations compare well with INS, allowing for the assignment of the modes and their symmetries. Electronic calculations elucidate the nature of ZFS in the complex. Features of different techniques to determine ZFS and other spin-Hamiltonian parameters in transition-metal complexes are summarized.
RESUMEN
Large separation of magnetic levels and slow relaxation in metal complexes are desirable properties of single-molecule magnets (SMMs). Spin-phonon coupling (interactions of magnetic levels with phonons) is ubiquitous, leading to magnetic relaxation and loss of memory in SMMs and quantum coherence in qubits. Direct observation of magnetic transitions and spin-phonon coupling in molecules is challenging. We have found that far-IR magnetic spectra (FIRMS) of Co(PPh3 )2 X2 (Co-X; X=Cl, Br, I) reveal rarely observed spin-phonon coupling as avoided crossings between magnetic and u-symmetry phonon transitions. Inelastic neutron scattering (INS) gives phonon spectra. Calculations using VASP and phonopy programs gave phonon symmetries and movies. Magnetic transitions among zero-field split (ZFS) levels of the S=3/2 electronic ground state were probed by INS, high-frequency and -field EPR (HFEPR), FIRMS, and frequency-domain FT terahertz EPR (FD-FT THz-EPR), giving magnetic excitation spectra and determining ZFS parameters (D, E) and g values. Ligand-field theory (LFT) was used to analyze earlier electronic absorption spectra and give calculated ZFS parameters matching those from the experiments. DFT calculations also gave spin densities in Co-X, showing that the larger Co(II) spin density in a molecule, the larger its ZFS magnitude. The current work reveals dynamics of magnetic and phonon excitations in SMMs. Studies of such couplings in the future would help to understand how spin-phonon coupling may lead to magnetic relaxation and develop guidance to control such coupling.
RESUMEN
A series of trans-dicyanide vanadium(III) compounds based on acetylacetonate, (PPN)[VIII(acac)2(CN)2]·(PPN)Cl·2MeCN (1), and salen ligands, (Et4N)[VIII(salen)(CN)2] (2a), (PPN)[VIII(MeOsalen)(CN)2]·DMF·2MeCN (3), and (PPN)[VIII(salphen)(CN)2]·DMF (4) [salen = N,N'-ethylenebis(salicyl-imine), MeOsalen = N,N'-ethylenebis(methoxysalicylimine), salphen = N,N'-phenylenebis(salicyl-imine), and PPN = bis(triphenylphosphine)iminium], were prepared and structurally characterized. High-field EPR studies reveal that the complexes exhibit moderate magnetic anisotropy with positive D values of +5.70, +3.80, +4.05, and +3.99 cm-1 for 1-4, respectively.
RESUMEN
The high-spin S = 2 Mn(III) complex [Mn{(OPPh2)2N}3] (1Mn) exhibits field-induced slow relaxation of magnetization (Inorg. Chem. 2013, 52, 12869). Magnetic susceptibility and dual-mode X-band electron paramagnetic resonance (EPR) studies revealed a negative value of the zero-field-splitting (zfs) parameter D. In order to explore the magnetic and electronic properties of 1Mn in detail, a combination of experimental and computational studies is presented herein. Alternating-current magnetometry on magnetically diluted samples (1Mn/1Ga) of 1Mn in the diamagnetic gallium analogue, [Ga{(OPPh2)2N}3], indicates that the slow relaxation behavior of 1Mn is due to the intrinsic properties of the individual molecules of 1Mn. Investigation of the single-crystal magnetization of both 1Mn and 1Mn/1Ga by a micro-SQUID device reveals hysteresis loops below 1 K. Closed hysteresis loops at a zero direct-current magnetic field are observed and attributed to fast quantum tunneling of magnetization. High-frequency and -field EPR (HFEPR) spectroscopic studies reveal that, apart from the second-order zfs terms (D and E), fourth-order terms (B4m) are required in order to appropriately describe the magnetic properties of 1Mn. These studies provide accurate spin-Hamiltonian (sH) parameters of 1Mn, i.e., zfs parameters |D| = 3.917(5) cm-1, |E| = 0.018(4) cm-1, B04 = B42 = 0, and B44 = (3.6 ± 1.7) × 10-3 cm-1 and g = [1.994(5), 1.996(4), 1.985(4)], and confirm the negative sign of D. Parallel-mode X-band EPR studies on 1Mn/1Ga and CH2Cl2 solutions of 1Mn probe the electronic-nuclear hyperfine interactions in the solid state and solution. The electronic structure of 1Mn is investigated by quantum-chemical calculations by employing recently developed computational protocols that are grounded on ab initio wave function theory. From computational analysis, the contributions of spin-spin and spin-orbit coupling to the magnitude of D are obtained. The calculations provide also computed values of the fourth-order zfs terms B4m, as well as those of the g and hyperfine interaction tensor components. In all cases, a very good agreement between the computed and experimentally determined sH parameters is observed. The magnetization relaxation properties of 1Mn are rationalized on the basis of the composition of the ground-state wave functions in the absence or presence of an external magnetic field.
RESUMEN
Spin-phonon coupling plays a critical role in magnetic relaxation in single-molecule magnets (SMMs) and molecular qubits. Yet, few studies of its nature have been conducted. Phonons here refer to both intermolecular and intramolecular vibrations. In the current work, we show spin-phonon couplings between IR-active phonons in a lanthanide molecular complex and Kramers doublets (from the crystal field). For the SMM Er[N(SiMe3)2]3 (1, Me = methyl), the couplings are observed in the far-IR magnetospectroscopy (FIRMS) of crystals with coupling constants ≈ 2-3 cm-1. In particular, one of the magnetic excitations couples to at least two phonon excitations. The FIRMS reveals at least three magnetic excitations (within the 4I15/2 ground state/manifold; hereafter, manifold) at 0 T at 104, â¼180, and 245 cm-1, corresponding to transitions from the ground state, MJ = ±15/2, to the first three excited states, MJ = ±13/2, ±11/2, and ±9/2, respectively. The transition between the ground and first excited Kramers doublet in 1 is also observed in inelastic neutron scattering (INS) spectroscopy, moving to a higher energy with an increasing magnetic field. INS also gives complete phonon spectra of 1. Periodic DFT computations provide the energies of all phonon excitations, which compare well with the spectra from INS, supporting the assignment of the inter-Kramers doublet (magnetic) transitions in the spectra. The current studies unveil and measure the spin-phonon couplings in a typical lanthanide complex and throw light on the origin of the spin-phonon entanglement.
RESUMEN
Large separations between ground and excited magnetic states in single-molecule magnets (SMMs) are desirable to reduce the likelihood of spin reversal in the molecules. Spin-phonon coupling is a process leading to magnetic relaxation. Both the reversal and coupling, making SMMs lose magnetic moments, are undesirable. However, direct determination of large magnetic states separations (>45â cm-1 ) is challenging, and few detailed investigations of the spin-phonon coupling have been conducted. The magnetic separation in [Co(12-crown-4)2 ](I3 )2 (12-crown-4) (1) is determined and its spin-phonon coupling is probed by inelastic neutron scattering (INS) and far-IR spectroscopy. INS, using oriented single crystals, shows a magnetic transition at 49.4(1.0)â cm-1 . Far-IR reveals that the magnetic transition and nearby phonons are coupled, a rarely observed phenomenon, with spin-phonon coupling constants of 1.7-2.5â cm-1 . The current work spectroscopically determines the ground-excited magnetic states separation in an SMM and quantifies its spin-phonon coupling, shedding light on the process causing magnetic relaxation.
RESUMEN
Spin-phonon coupling plays an important role in single-molecule magnets and molecular qubits. However, there have been few detailed studies of its nature. Here, we show for the first time distinct couplings of g phonons of CoII(acac)2(H2O)2 (acac = acetylacetonate) and its deuterated analogs with zero-field-split, excited magnetic/spin levels (Kramers doublet (KD)) of the S = 3/2 electronic ground state. The couplings are observed as avoided crossings in magnetic-field-dependent Raman spectra with coupling constants of 1-2 cm-1. Far-IR spectra reveal the magnetic-dipole-allowed, inter-KD transition, shifting to higher energy with increasing field. Density functional theory calculations are used to rationalize energies and symmetries of the phonons. A vibronic coupling model, supported by electronic structure calculations, is proposed to rationalize the behavior of the coupled Raman peaks. This work spectroscopically reveals and quantitates the spin-phonon couplings in typical transition metal complexes and sheds light on the origin of the spin-phonon entanglement.
RESUMEN
The high-spin (S = 1) tetrahedral Ni(II) complex [Ni{(i)Pr2P(Se)NP(Se)(i)Pr2}2] was investigated by magnetometry, spectroscopic, and quantum chemical methods. Angle-resolved magnetometry studies revealed the orientation of the magnetization principal axes. The very large zero-field splitting (zfs), D = 45.40(2) cm(-1), E = 1.91(2) cm(-1), of the complex was accurately determined by far-infrared magnetic spectroscopy, directly observing transitions between the spin sublevels of the triplet ground state. These are the largest zfs values ever determined--directly--for a high-spin Ni(II) complex. Ab initio calculations further probed the electronic structure of the system, elucidating the factors controlling the sign and magnitude of D. The latter is dominated by spin-orbit coupling contributions of the Ni ions, whereas the corresponding effects of the Se atoms are remarkably smaller.
RESUMEN
Here, we report the photoconducting response of field-effect transistors based on three atomic layers of chemical vapor transport grown WSe2 crystals mechanically exfoliated onto SiO2. We find that trilayered WSe2 field-effect transistors, built with the simplest possible architecture, can display high hole mobilities ranging from 350 cm(2)/(V s) at room temperature (saturating at a value of â¼500 cm(2)/(V s) below 50 K) displaying a strong photocurrent response, which leads to exceptionally high photoresponsivities up to 7 A/W under white light illumination of the entire channel for power densities p < 10(2) W/m(2). Under a fixed wavelength of λ = 532 nm and a laser spot size smaller than the conducting channel area, we extract photoresponsitivities approaching 100 mA/W with concomitantly high external quantum efficiencies up to â¼40% at room temperature. These values surpass values recently reported from more complex architectures, such as graphene and transition metal dichalcogenides based heterostructures. Also, trilayered WSe2 phototransistors display photoresponse times on the order of 10 µs. Our results indicate that the addition of a few atomic layers considerably decreases the photoresponse times, probably by minimizing the interaction with the substrates, while maintaining a very high photoresponsivity.