RESUMEN
The γ-crystallins of the eye lens nucleus are among the longest-lived proteins in the human body. Synthesized in utero, they must remain folded and soluble throughout adulthood to maintain lens transparency and avoid cataracts. γD- and γS-crystallin are two major monomeric crystallins of the human lens. γD-crystallin is concentrated in the oldest lens fiber cells, the lens nucleus, whereas γS-crystallin is concentrated in the younger cells of the lens cortex. The kinetic stability parameters of these two-domain proteins and their isolated domains were determined and compared. Kinetic unfolding experiments monitored by fluorescence spectroscopy in varying concentrations of guanidinium chloride were used to extrapolate unfolding rate constants and half-lives of the crystallins in the absence of the denaturant. Consistent with their long lifespans in the lens, extrapolated half-lives for the initial unfolding step were on the timescale of years. Both proteins' isolated N-terminal domains were less kinetically stable than their respective C-terminal domains at denaturant concentrations predicted to disrupt the domain interface, but at low denaturant concentrations, the relative kinetic stabilities were reversed. Cataract-associated aggregation has been shown to proceed from partially unfolded intermediates in these proteins; their extreme kinetic stability likely evolved to protect the lens from the initiation of aggregation reactions. Our findings indicate that the domain interface is the source of significant kinetic stability. The gene duplication and fusion event that produced the modern two-domain architecture of vertebrate lens crystallins may be the origin of their high kinetic as well as thermodynamic stability.
Asunto(s)
Cristalino/metabolismo , gamma-Cristalinas/química , gamma-Cristalinas/metabolismo , Humanos , Cinética , Modelos Moleculares , Dominios Proteicos , Pliegue de Proteína , Estabilidad Proteica , Temperatura , Factores de TiempoRESUMEN
PURPOSE: Amyloid fibrils are associated with a variety of human protein misfolding and protein deposition diseases. Previous studies have shown that bovine crystallins form amyloid fibers under denaturing conditions and amyloid fibers accumulate in the lens of mice carrying mutations in crystallin genes. Within differentiating lens fiber cells, crystallins may be exposed to low pH lysosome compartments. We have investigated whether human gammaD-crystallin forms amyloid fibrils in vitro, when exposed to low pH partially denaturing conditions. METHODS: Human gammaD-crystallin expressed and purified from E. coli, is stable and soluble at 37 degrees C, pH7, and refolds from the fully denatured state back to the native state under these conditions. Purified Human gammaD-crystallin as well as its isolated NH2- and COOH-terminal domains were incubated at acid pH and subsequently examined by transmission electron microscopy, absorption spectroscopy in the presence of Congo red, FTIR, and low-angle X-ray scattering. RESULTS: Incubation of the intact protein at 37 degrees C in 50 mM acetate buffer pH 3 at 50 mg/ml for 2 days, led to formation of a viscous, gel-like solution. Examination of negatively stained samples by transmission electron microscopy revealed linear, non-branching fibrils of variable lengths, with widths ranging from 15 to 35 nm. Incubation with the dye Congo red generated the spectral red shift associated with dye binding to amyloid. Low-angle X-ray scattering from samples showed clear meridional reflection at 4.7 A and a more diffuse reflection on the equator between 10 and 11 A which is the typical "cross-beta" X-ray fiber diffraction pattern for amyloid fibers. FTIR was used to follow the evolution of the secondary structure of gammaD-crystallin with time during incubation of the protein at pH 3. The native protein displayed a major band at 1640 cm-1 that converted during incubation at 37 degrees C to a band at 1616 cm-1. An additional band at 1689 cm-1 also appeared with time. The presence of bands in the regions about 1620 cm-1 and about 1680 cm-1 has been attributed to the formation of intermolecular beta-sheet structure that characterizes the fibrillar amyloid motif. The isolated NH2-terminal 1-82 and COOH-terminal 86-174 domains of HgammaD-crystallin also formed amyloid fibrils after incubation under the same conditions, but to a lesser extent than the full length. CONCLUSIONS: HgammaD-crystallin, as well as its isolated NH2-terminal 1-82 and COOH-terminal 86-174 domains of HgammaD-crystallin formed amyloid fibrils upon incubation at acid pH. Investigations of early stages in cataract formation within the lens will be required to assess whether amyloid fibrils play a role in the initiation of cataract in vivo.