Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 11: 622385, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33584723

RESUMEN

Self-amplifying replicon RNA (RepRNA) promotes expansion of mRNA templates encoding genes of interest through their replicative nature, thus providing increased antigen payloads. RepRNA derived from the non-cytopathogenic classical swine fever virus (CSFV) targets monocytes and dendritic cells (DCs), potentially promoting prolonged antigen expression in the DCs, contrasting with cytopathogenic RepRNA. We engineered pestivirus RepRNA constructs encoding influenza virus H5N1 (A/chicken/Yamaguchi/7/2004) nucleoprotein (Rep-NP) or hemagglutinin (Rep-HA). The inherent RNase-sensitivity of RepRNA had to be circumvented to ensure efficient delivery to DCs for intracellular release and RepRNA translation; we have reported how only particular synthetic delivery vehicle formulations are appropriate. The question remained concerning RepRNA packaged in virus replicon particles (VRPs); we have now compared an efficient polyethylenimine (PEI)-based formulation (polyplex) with VRP-delivery as well as naked RepRNA co-administered with the potent bis-(3',5')-cyclic dimeric adenosine monophosphate (c-di-AMP) adjuvant. All formulations contained a Rep-HA/Rep-NP mix, to assess the breadth of both humoral and cell-mediated defences against the influenza virus antigens. Assessment employed pigs for their close immunological relationship to humans, and as natural hosts for influenza virus. Animals receiving the VRPs, as well as PEI-delivered RepRNA, displayed strong humoral and cellular responses against both HA and NP, but with VRPs proving to be more efficacious. In contrast, naked RepRNA plus c-di-AMP could induce only low-level immune responses, in one out of five pigs. In conclusion, RepRNA encoding different influenza virus antigens are efficacious for inducing both humoral and cellular immune defences in pigs. Comparisons showed that packaging within VRP remains the most efficacious for delivery leading to induction of immune defences; however, this technology necessitates employment of expensive complementing cell cultures, and VRPs do not target human cells. Therefore, choosing the appropriate synthetic delivery vehicle still offers potential for rapid vaccine design, particularly in the context of the current coronavirus pandemic.


Asunto(s)
Inmunidad Celular , Inmunidad Humoral , Vacunas contra la Influenza/inmunología , ARN Viral/inmunología , Replicón/inmunología , Animales , COVID-19 , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Subtipo H5N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/administración & dosificación , Pestivirus , ARN Viral/administración & dosificación , SARS-CoV-2 , Porcinos , Proteínas del Núcleo Viral/inmunología
2.
Ther Deliv ; 3(9): 1077-99, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23035593

RESUMEN

Dendritic cells (DCs) are essential to many aspects of immune defense development and regulation. They provide important targets for prophylactic and therapeutic delivery. While protein delivery has had considerable success, RNA delivery is still expanding. Delivering RNA molecules for RNAi has shown particular success and there are reports on successful delivery of mRNA. Central, therein, is the application of cationic entities. Following endocytosis of the delivery vehicle for the RNA, cationic entities should promote vesicular membrane perturbation, facilitating cytosolic release. The present review explains the diversity of DC function in immune response development and control. Promotion of delivered RNA cytosolic release is discussed, relating to immunoprophylactic and therapeutic potential, and DC endocytic machinery is reviewed, showing how DC endocytic pathways influence the handling of internalized material. The potential advantages for application of replicating RNA are presented and discussed, in consideration of their value and development in the near future.


Asunto(s)
Células Dendríticas/metabolismo , Nanopartículas/administración & dosificación , ARN/administración & dosificación , Animales , Presentación de Antígeno , Humanos , Concentración de Iones de Hidrógeno , Tolerancia Inmunológica , Interferencia de ARN , Vesículas Transportadoras/metabolismo
3.
Vaccine ; 29(7): 1491-503, 2011 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-21184857

RESUMEN

Virus replicon particles (VRP) are genetically engineered infectious virions incapable of generating progeny virus due to partial or complete deletion of at least one structural gene. VRP fulfil the criteria of a safe vaccine and gene delivery system. With VRP derived from classical swine fever virus (CSF-VRP), a single intradermal vaccination protects from disease. Spreading of the challenge virus in the host is however not completely abolished. Parameters that are critical for immunogenicity of CSF-VRP are not well characterized. Considering the importance of type I interferon (IFN-α/ß) to immune defence development, we generated IFN-α/ß-inducing VRP to determine how this would influence vaccine efficacy. We also evaluated the effect of co-expressing granulocyte macrophage colony-stimulating factor (GM-CSF) in the vaccine context. The VRP were capable of long-term replication in cell culture despite the presence of IFN-α/ß. In vivo, RNA replication was essential for the induction of an immune response. IFN-α/ß-inducing and GM-CSF-expressing CSF-VRP were similar to unmodified VRP in terms of antibody and peripheral T-cell responses, and in reducing the blood levels of challenge virus RNA. Importantly, the IFN-α/ß-inducing VRP did show increased efficacy over the unmodified VRP in terms of B-cell and T-cell responses, when tested with secondary immune responses by in vitro restimulation assay.


Asunto(s)
Virus de la Fiebre Porcina Clásica/inmunología , Peste Porcina Clásica/prevención & control , Factor Estimulante de Colonias de Granulocitos y Macrófagos/inmunología , Interferón-alfa/inmunología , Interferón beta/inmunología , Vacunas Virales/inmunología , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Formación de Anticuerpos , Línea Celular , Peste Porcina Clásica/inmunología , Virus de la Fiebre Porcina Clásica/genética , Virus de la Fiebre Porcina Clásica/fisiología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Interferón-alfa/genética , Interferón beta/genética , ARN Viral/biosíntesis , ARN Viral/sangre , Replicón , Porcinos , Linfocitos T/inmunología , Proteínas del Envoltorio Viral/inmunología , Vacunas Virales/genética , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA