Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Dev Cogn Neurosci ; 41: 100737, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31786477

RESUMEN

Empirical and theoretical work suggests that early postnatal experience may inform later developing synaptic connectivity to adapt the brain to its environment. We hypothesized that early maternal experience may program the development of synaptic density on long range frontal cortex projections. To test this idea, we used maternal separation (MS) to generate environmental variability and examined how MS affected 1) maternal care and 2) synapse density on virally-labeled long range axons of offspring reared in MS or control conditions. We found that MS and variation in maternal care predicted bouton density on dorsal frontal cortex axons that terminated in the basolateral amygdala (BLA) and dorsomedial striatum (DMS) with more, fragmented care associated with higher density. The effects of maternal care on these distinct axonal projections of the frontal cortex were manifest at different ages. Maternal care measures were correlated with frontal cortex → BLA bouton density at mid-adolescence postnatal (P) day 35 and frontal cortex → DMS bouton density in adulthood (P85). Meanwhile, we found no evidence that MS or maternal care affected bouton density on ascending orbitofrontal cortex (OFC) or BLA axons that terminated in the dorsal frontal cortices. Our data show that variation in early experience can alter development in a circuit-specific and age-dependent manner that may be relevant to understanding the effects of early life adversity.


Asunto(s)
Lóbulo Frontal/anomalías , Privación Materna , Animales , Modelos Animales de Enfermedad , Masculino , Ratones
2.
Sci Adv ; 5(7): eaaw3108, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31309147

RESUMEN

Neuromodulation plays a critical role in brain function in both health and disease, and new tools that capture neuromodulation with high spatial and temporal resolution are needed. Here, we introduce a synthetic catecholamine nanosensor with fluorescent emission in the near infrared range (1000-1300 nm), near infrared catecholamine nanosensor (nIRCat). We demonstrate that nIRCats can be used to measure electrically and optogenetically evoked dopamine release in brain tissue, revealing hotspots with a median size of 2 µm. We also demonstrated that nIRCats are compatible with dopamine pharmacology and show D2 autoreceptor modulation of evoked dopamine release, which varied as a function of initial release magnitude at different hotspots. Together, our data demonstrate that nIRCats and other nanosensors of this class can serve as versatile synthetic optical tools to monitor neuromodulatory neurotransmitter release with high spatial resolution.


Asunto(s)
Técnicas Biosensibles , Catecolaminas/metabolismo , Cuerpo Estriado/diagnóstico por imagen , Cuerpo Estriado/metabolismo , Dopamina/metabolismo , Imagen Molecular , Animales , Catecolaminas/química , Ratones , Imagen Molecular/métodos , Neuronas , Espectroscopía Infrarroja Corta , Transmisión Sináptica
4.
Dev Cogn Neurosci ; 30: 100-107, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29413532

RESUMEN

Pyramidal neurons in the neocortex receive a majority of their synapses on dendritic spines, whose growth, gain, and loss regulate the strength and identity of neural connections. Juvenile brains typically show higher spine density and turnover compared to adult brains, potentially enabling greater capacity for experience-dependent circuit 'rewiring'. Although spine pruning and stabilization in frontal cortex overlap with pubertal milestones, it is unclear if gonadal hormones drive these processes. To address this question, we used hormone manipulations and in vivo 2-photon microscopy to test for a causal relationship between pubertal hormones and spine pruning and stabilization in layer 5 neurons in the frontal cortex of female mice. We found that spine density, gains, and losses decreased from P27 to P60 and that these measures were not affected by pre-pubertal hormone injections or ovariectomy. Further analyses of spine morphology after manipulation of gonadal hormones suggest that gonadal hormones may play a role in morphological maturation and dynamics. Our data help to segregate hormone-sensitive and hormone-insensitive maturational processes that occur simultaneously in dorsomedial frontal cortex. These data provide more specific insight into adolescent development and may have implications for understanding the neurodevelopmental effects of changes in pubertal timing in humans.


Asunto(s)
Espinas Dendríticas/metabolismo , Hormonas Gonadales/metabolismo , Células Piramidales/metabolismo , Animales , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL
5.
Artículo en Inglés | MEDLINE | ID: mdl-30674651

RESUMEN

The maturation of the prefrontal cortex (PFC) during adolescence is thought to be important for cognitive and affective development and mental health risk. Whereas many summaries of adolescent development have focused on dendritic spine pruning and gray matter thinning in the PFC during adolescence, we highlight recent rodent data from our laboratory and others to call attention to continued synapse formation and plasticity in the adolescent period in specific cell types and circuits. In particular, we highlight changes in inhibitory neurotransmission onto intratelencephalic (IT-type) projecting cortical neurons and late expansion of connectivity between the amygdala and PFC and the ventral tegmental area and PFC. Continued work on these "late blooming" synapses in specific cell types and circuits, and their interrelationships, will illuminate new opportunities for understanding and shaping the biology of adolescent development. We also address which aspects of adolescent PFC development are dependent on pubertal processes.

6.
Brain Res ; 1654(Pt B): 123-144, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-27590721

RESUMEN

Postnatal brain development is studded with sensitive periods during which experience dependent plasticity is enhanced. This enables rapid learning from environmental inputs and reorganization of cortical circuits that matches behavior with environmental contingencies. Significant headway has been achieved in characterizing and understanding sensitive period biology in primary sensory cortices, but relatively little is known about sensitive period biology in associative neocortex. One possible mediator is the onset of puberty, which marks the transition to adolescence, when animals shift their behavior toward gaining independence and exploring their social world. Puberty onset correlates with reduced behavioral plasticity in some domains and enhanced plasticity in others, and therefore may drive the transition from juvenile to adolescent brain function. Pubertal onset is also occurring earlier in developed nations, particularly in unserved populations, and earlier puberty is associated with vulnerability for substance use, depression and anxiety. In the present article we review the evidence that supports a causal role for puberty in developmental changes in the function and neurobiology of the associative neocortex. We also propose a model for how pubertal hormones may regulate sensitive period plasticity in associative neocortex. We conclude that the evidence suggests puberty onset may play a causal role in some aspects of associative neocortical development, but that further research that manipulates puberty and measures gonadal hormones is required. We argue that further work of this kind is urgently needed to determine how earlier puberty may negatively impact human health and learning potential. This article is part of a Special Issue entitled SI: Adolescent plasticity.


Asunto(s)
Neocórtex/crecimiento & desarrollo , Neocórtex/fisiología , Plasticidad Neuronal/fisiología , Pubertad/fisiología , Maduración Sexual/fisiología , Animales , Humanos , Pubertad/psicología
7.
Dev Cogn Neurosci ; 18: 113-120, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26896859

RESUMEN

The adolescent transition from juvenile to adult is marked by anatomical and functional remodeling of brain networks. Currently, the cellular and synaptic level changes underlying the adolescent transition are only coarsely understood. Here, we use two-photon imaging to make time-lapse observations of long-range axons that innervate the frontal cortex in the living brain. We labeled cells in the orbitofrontal cortex (OFC) and basolateral amygdala (BLA) and imaged their axonal afferents to the dorsomedial prefrontal cortex (dmPFC). We also imaged the apical dendrites of dmPFC pyramidal neurons. Images were taken daily in separate cohorts of juvenile (P24-P28) and young adult mice (P64-P68), ages where we have previously discovered differences in dmPFC dependent decision-making. Dendritic spines were pruned across this peri-adolescent period, while BLA and OFC afferents followed alternate developmental trajectories. OFC boutons showed no decrease in density, but did show a decrease in daily bouton gain and loss with age. BLA axons showed an increase in both bouton density and daily bouton gain at the later age, suggesting a delayed window of enhanced plasticity. Our findings reveal projection specific maturation of synaptic structures within a single frontal region and suggest that stabilization is a more general characteristic of maturation than pruning.


Asunto(s)
Vías Aferentes , Envejecimiento , Amígdala del Cerebelo/citología , Axones/fisiología , Plasticidad Neuronal , Corteza Prefrontal/citología , Animales , Dendritas/fisiología , Masculino , Ratones , Células Piramidales/citología , Maduración Sexual
8.
Dev Cogn Neurosci ; 18: 49-56, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26531108

RESUMEN

Early life adversity is associated with increased risk for mental and physical health problems, including substance abuse. Changes in neural development caused by early life insults could cause or complicate these conditions. Maternal separation (MS) is a model of early adversity for rodents. Clear effects of MS have been shown on behavioral flexibility in rats, but studies of effects of MS on cognition in mice have been mixed. We hypothesized that previous studies focused on adult mice may have overlooked a developmental transition point when juvenile mice exhibit greater flexibility in reversal learning. Here, using a 4-choice reversal learning task we find that early MS leads to decreased flexibility in post-weaning juvenile mice, but no significant effects in adults. In a further study of voluntary ethanol consumption, we found that adult mice that had experienced MS showed greater cumulative 20% ethanol consumption in an intermittent access paradigm compared to controls. Our data confirm that the MS paradigm can reduce cognitive flexibility in mice and may enhance risk for substance abuse. We discuss possible interpretations of these data as stress-related impairment or adaptive earlier maturation in response to an adverse environment.


Asunto(s)
Envejecimiento/fisiología , Envejecimiento/psicología , Cognición/fisiología , Privación Materna , Modelos Animales , Modelos Psicológicos , Consumo de Bebidas Alcohólicas/psicología , Animales , Conducta de Elección , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Aprendizaje Inverso/fisiología , Estrés Psicológico/psicología , Destete
9.
J Neurophysiol ; 114(2): 1158-71, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26084912

RESUMEN

The role of primate frontal cortex in vocal communication and its significance in language evolution have a controversial history. While evidence indicates that vocalization processing occurs in ventrolateral prefrontal cortex neurons, vocal-motor activity has been conjectured to be primarily subcortical and suggestive of a distinctly different neural architecture from humans. Direct evidence of neural activity during natural vocal communication is limited, as previous studies were performed in chair-restrained animals. Here we recorded the activity of single neurons across multiple regions of prefrontal and premotor cortex while freely moving marmosets engaged in a natural vocal behavior known as antiphonal calling. Our aim was to test whether neurons in marmoset frontal cortex exhibited responses during vocal-signal processing and/or vocal-motor production in the context of active, natural communication. We observed motor-related changes in single neuron activity during vocal production, but relatively weak sensory responses for vocalization processing during this natural behavior. Vocal-motor responses occurred both prior to and during call production and were typically coupled to the timing of each vocalization pulse. Despite the relatively weak sensory responses a population classifier was able to distinguish between neural activity that occurred during presentations of vocalization stimuli that elicited an antiphonal response and those that did not. These findings are suggestive of the role that nonhuman primate frontal cortex neurons play in natural communication and provide an important foundation for more explicit tests of the functional contributions of these neocortical areas during vocal behaviors.


Asunto(s)
Callithrix/fisiología , Corteza Motora/fisiología , Neuronas/fisiología , Corteza Prefrontal/fisiología , Vocalización Animal/fisiología , Animales , Femenino , Masculino , Microelectrodos , Actividad Motora/fisiología
10.
Am J Primatol ; 75(9): 904-16, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23592313

RESUMEN

Noisy acoustic environments present several challenges for the evolution of acoustic communication systems. Among the most significant is the need to limit degradation of spectro-temporal signal structure in order to maintain communicative efficacy. This can be achieved by selecting for several potentially complementary processes. Selection can act on behavioral mechanisms permitting signalers to control the timing and occurrence of signal production to avoid acoustic interference. Likewise, the signal itself may be the target of selection, biasing the evolution of its structure to comprise acoustic features that avoid interference from ambient noise or degrade minimally in the habitat. Here, we address the latter topic for common marmoset (Callithrix jacchus) long-distance contact vocalizations, known as phee calls. Our aim was to test whether this vocalization is specifically adapted for transmission in a species-typical forest habitat, the Atlantic forests of northeastern Brazil. We combined seasonal analyses of ambient habitat acoustics with experiments in which pure tones, clicks, and vocalizations were broadcast and rerecorded at different distances to characterize signal degradation in the habitat. Ambient sound was analyzed from intervals throughout the day and over rainy and dry seasons, showing temporal regularities across varied timescales. Broadcast experiment results indicated that the tone and click stimuli showed the typically inverse relationship between frequency and signaling efficacy. Although marmoset phee calls degraded over distance with marked predictability compared with artificial sounds, they did not otherwise appear to be specially designed for increased transmission efficacy or minimal interference in this habitat. We discuss these data in the context of other similar studies and evidence of potential behavioral mechanisms for avoiding acoustic interference in order to maintain effective vocal communication in common marmosets.


Asunto(s)
Acústica , Callithrix/fisiología , Ecosistema , Vocalización Animal/fisiología , Animales , Brasil , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...