Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 24(43): 26499-26510, 2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36305719

RESUMEN

The gas-phase bimolecular reaction of the methylidyne (CH; X2Π) radical with vinylacetylene (H2CCHCCH; X1A') was conducted at a collision energy of 20.3 kJ mol-1 under single collision conditions exploiting the crossed molecular beam experimental results merged with ab initio electronic structure calculations and ab initio molecular dynamics (AIMD) simulations. The laboratory data reveal that the bimolecular reaction proceeds barrierlessly via indirect scattering dynamics through long-lived C5H5 reaction intermediate(s) ultimately dissociating to C5H4 isomers along with atomic hydrogen with the latter predominantly originating from the vinylacetylene reactant as confirmed by the isotopic substitution experiments in the D1-methylidyne-vinylacetylene reaction. Combined with ab initio calculations of the potential energy surface (PES) and statistical Rice-Ramsperger-Kassel-Marcus (RRKM) calculations, the experimental determined reaction energy of -146 ± 26 kJ mol-1 along with the distribution minimum of T(θ) at 90° and isotopic substitution experiments suggest ethynylallene (p1; ΔrG = -230 ± 4 kJ mol-1) as the dominant product. The ethynylallene (p1) may be formed with extensive rovibrational excitation, which would result in a lower maximum translational energy. Further, AIMD simulations reveal that the reaction dynamics leads to p1 (ethynylallene, 75%) plus atomic hydrogen with the dominant initial complex being i1 formed by methylidyne radical addition to the double CC bond in vinylacetylene. Overall, combining the crossed molecular beam experimental results with ab initio electronic structure calculations and ab initio molecular dynamics (AIMD) simulations, ethynylallene (p1) is expected to represent the dominant product in the reaction of the methylidyne (CH; X2Π) radical with vinylacetylene (H2CCHCCH; X1A').

2.
J Phys Chem A ; 126(34): 5768-5775, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35993843

RESUMEN

The photodissociation dynamics of astrophysically relevant propyl derivatives (C3H7X; X = CN, OH, HCO) at 157 nm exploiting an ultracompact velocity map imaging (UVMIS) setup has been reported. The successful operation of UVMIS allowed the exploration of the 157 nm photodissociation of six (iso)propyl systems─n/i-propyl cyanide (C3H7CN), n/i-propyl alcohol (C3H7OH), and (iso)butanal (C3H7CHO)─to explore the C3H7 loss channel. The distinct center-of-mass translational energy distributions for the i-C3H7X (X= CN, OH, HCO) could be explained through preferential excitation of the low frequency C-H bending modes of the formyl moiety compared to the higher frequency stretching of the cyano and hydroxy moieties. Although the ionization energy of the n-C3H7 radical exceeds the energy of a 157 nm photon, C3H7+ was observed in the n-C3H7X (X = CN, OH, HCO) systems as a result of photoionization of vibrationally "hot" n-C3H7 fragments, photoionization of i-C3H7 after a hydrogen shift in vibrationally "hot" n-C3H7 radicals, and/or two-photon ionization. Our experiments reveal that at least the isopropyl radical (i-C3H7) and possibly the normal propyl radical (n-C3H7) should be present in the interstellar medium and hence searched for by radio telescopes.

3.
J Phys Chem A ; 126(21): 3347-3357, 2022 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-35584043

RESUMEN

We investigated the formation of small organosilicon molecules─potential precursors to silicon-carbide dust grains ejected by dying carbon-rich asymptotic giant branch stars─in the gas phase via the reaction of atomic carbon (C) in its 3P electronic ground state with silane (SiH4; X1A1) using the crossed molecular beams technique. The reactants collided under single collision conditions at a collision energy of 13.0 ± 0.2 kJ mol-1, leading to the formation of the silylenemethyl radical (HCSiH2; X2B2) via the unimolecular decomposition of triplet silaethylene (H2CSiH2; a3A″). The silaethylene radical was formed via hydrogen migration of the triplet silylmethylene (HCSiH3; X3A″) radical, which in turn was identified as the initial collision complex accessed via the barrierless insertion of atomic carbon into the silicon-hydrogen bond of silane. Our results mark the first observation of the silylenemethyl radical, where previously only its thermodynamically more stable methylsilylidyne (CH3Si; X2A″) and methylenesilyl (CH2SiH; X2A') isomers were observed in low-temperature matrices. Considering the abundance of silane and the availability of atomic carbon in carbon-rich circumstellar environments, our results suggest that future astrochemical models should be updated to include contributions from small saturated organosilicon molecules as potential precursors to pure gaseous silicon-carbides and ultimately to silicon-carbide dust.

4.
Sci Adv ; 7(1)2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33523847

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) are fundamental molecular building blocks of fullerenes and carbonaceous nanostructures in the interstellar medium and in combustion systems. However, an understanding of the formation of aromatic molecules carrying five-membered rings-the essential building block of nonplanar PAHs-is still in its infancy. Exploiting crossed molecular beam experiments augmented by electronic structure calculations and astrochemical modeling, we reveal an unusual pathway leading to the formation of indene (C9H8)-the prototype aromatic molecule with a five-membered ring-via a barrierless bimolecular reaction involving the simplest organic radical-methylidyne (CH)-and styrene (C6H5C2H3) through the hitherto elusive methylidyne addition-cyclization-aromatization (MACA) mechanism. Through extensive structural reorganization of the carbon backbone, the incorporation of a five-membered ring may eventually lead to three-dimensional PAHs such as corannulene (C20H10) along with fullerenes (C60, C70), thus offering a new concept on the low-temperature chemistry of carbon in our galaxy.

5.
J Phys Chem A ; 125(1): 126-138, 2021 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-33397109

RESUMEN

The bimolecular gas-phase reaction of the methylidyne radical (CH; X2Π) with 1,2-butadiene (CH2CCHCH3; X1A') was investigated at a collision energy of 20.6 kJ mol-1 under single collision conditions. Combining our laboratory data with high-level electronic structure calculations, we reveal that this bimolecular reaction proceeds through the barrierless addition of the methylidyne radical to the carbon-carbon double bonds of 1,2-butadiene leading to doublet C5H7 intermediates. These collision adducts undergo a nonstatistical unimolecular decomposition through atomic hydrogen elimination to at least the cyclic 1-vinyl-cyclopropene (p5/p26), 1-methyl-3-methylenecyclopropene (p28), and 1,2-bis(methylene)cyclopropane (p29) in overall exoergic reactions. The barrierless nature of this bimolecular reaction suggests that these cyclic C5H6 isomers might be viable targets to be searched for in cold molecular clouds like TMC-1.

6.
J Phys Chem Lett ; 11(18): 7874-7881, 2020 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-32814428

RESUMEN

The gas phase reaction of the simplest silicon-bearing radical silylidyne (SiH; X2Π) with disilane (Si2H6; X1A1g) was investigated in a crossed molecular beams machine. Combined with electronic structure calculations, our data reveal the synthesis of the previously elusive trisilacyclopropyl radical (Si3H5)-the isovalent counterpart of the cyclopropyl radical (C3H5)-along with molecular hydrogen via indirect scattering dynamics through long-lived, acyclic trisilapropyl (i-Si3H7) collision complex(es). Possible hydrogen-atom roaming on the doublet surface proceeds to molecular hydrogen loss accompanied by ring closure. The chemical dynamics are quite distinct from the isovalent methylidyne (CH)-ethane (C2H6) reaction, which leads to propylene (C3H6) radical plus atomic hydrogen but not to cyclopropyl (C3H5) radical plus molecular hydrogen. The identification of the trisilacyclopropyl radical (Si3H5) opens up preparative pathways for an unusual gas phase chemistry of previously inaccessible ring-strained (inorgano)silicon molecules as a result of single-collision events.

7.
Chemphyschem ; 21(12): 1295-1309, 2020 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-32291897

RESUMEN

The crossed molecular beam reactions of the methylidyne radical (CH; X2 Π) with 1,3-butadiene (CH2 CHCHCH2 ; X1 Ag ) along with their (partially) deuterated counterparts were performed at collision energies of 20.8 kJ mol-1 under single collision conditions. Combining our laboratory data with ab initio calculations, we reveal that the methylidyne radical may add barrierlessly to the terminal carbon atom and/or carbon-carbon double bond of 1,3-butadiene, leading to doublet C5 H7 intermediates with life times longer than the rotation periods. These collision complexes undergo non-statistical unimolecular decomposition through hydrogen atom emission yielding the cyclic cis- and trans-3-vinyl-cyclopropene products with reaction exoergicities of 119±42 kJ mol-1 . Since this reaction is barrierless, exoergic, and all transition states are located below the energy of the separated reactants, these cyclic C5 H6 products are predicted to be accessed even in low-temperature environments, such as in hydrocarbon-rich atmospheres of planets and cold molecular clouds such as TMC-1.

8.
Curr Stem Cell Res Ther ; 15(6): 492-508, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32250233

RESUMEN

Stem cell therapy is applicable for repair and replacement of damaged cells and tissues. Apart from transplanting cells to the body, the stem cell therapy directs them to grow new and healthy tissues. Stem cells in the area of regenerative medicines hold tremendous promise that may help to regenerate the damaged tissues and heal various diseases like multiple sclerosis, heart diseases, Parkinson's disease, and so on. To prove the safety, efficacy, and for the requirement of a licence for manufacturing and sale, all the stem cell therapies should pass the required criteria and undergo certain examinations of the regulatory agencies. The regulatory authorities review the manufacturing procedures of products to assure its purity and potency. This review summarizes the comparative critical evaluations of existing regulations and developments on the stem cells research in India, USA, EU and Asian regions and also discusses the challenges that have to be overcome and the important points that should be understood to position India as a source of the perspective nation in stem cells around the world.


Asunto(s)
Unión Europea , Investigación con Células Madre/legislación & jurisprudencia , Humanos , India , Mercadotecnía , National Institutes of Health (U.S.) , Investigación con Células Madre/ética , Estados Unidos
9.
J Am Chem Soc ; 142(6): 3205-3213, 2020 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-31961149

RESUMEN

The fulvenallene molecule (C7H6) has been synthesized via the elementary gas-phase reaction of the methylidyne radical (CH) with the benzene molecule (C6H6) on the doublet C7H7 surface under single collision conditions. The barrier-less route to the cyclic fulvenallene molecule involves the addition of the methylidyne radical to the π-electron density of benzene leading eventually to a Jahn-Teller distorted tropyl (C7H7) radical intermediate and exotic ring opening-ring contraction sequences terminated by atomic hydrogen elimination. The methylidyne-benzene system represents a benchmark to probe the outcome of the elementary reaction of the simplest hydrocarbon radical-methylidyne-with the prototype of a closed-shell aromatic molecule-benzene-yielding nonbenzenoid fulvenallene. Combined with electronic structure and statistical calculations, this bimolecular reaction sheds light on the unusual reaction dynamics of Hückel aromatic systems and remarkable (polycyclic) reaction intermediates, which cannot be studied via classical organic, synthetic methods, thus opening up a versatile path to access this previously largely obscure class of fulvenallenes.

10.
J Phys Chem A ; 123(49): 10543-10555, 2019 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-31718184

RESUMEN

The crossed molecular beam reactions of the methylidyne radical (CH; X2Π) with propylene (CH3CHCH2; X1A') along with (partially) substituted reactants were conducted at collision energies of 19.3 kJ mol-1. Combining our experimental data with ab initio electronic structure and statistical calculations, the methylidyne radical is revealed to add barrierlessly to the carbon-carbon double bond of propylene reactant resulting in a cyclic doublet C4H7 intermediate with a lifetime longer than its rotation period. These adducts undergo a nonstatistical unimolecular decomposition via atomic hydrogen loss through tight exit transition states forming the cyclic products 1-methylcyclopropene and 3-methylcyclopropene with overall reaction exoergicities of 168 ± 25 kJ mol-1. These C4H6 isomers are predicted to exist even in low-temperature environments such as cold molecular clouds like TMC-1, since the reaction is barrierless and exoergic, all transition states are below the energy of the separated reactants, and both the methylidyne radical (CH; X2Π) and propylene reactant were detected in cold molecular clouds such as TMC-1.

11.
Sci Rep ; 9(1): 17595, 2019 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-31772216

RESUMEN

The crossed molecular beams reactions of the 1-propynyl radical (CH3CC; X2A1) with benzene (C6H6; X1A1g) and D6-benzene (C6D6; X1A1g) were conducted to explore the formation of C9H8 isomers under single-collision conditions. The underlying reaction mechanisms were unravelled through the combination of the experimental data with electronic structure and statistical RRKM calculations. These data suggest the formation of 1-phenyl-1-propyne (C6H5CCCH3) via the barrierless addition of 1-propynyl to benzene forming a low-lying doublet C9H9 intermediate that dissociates by hydrogen atom emission via a tight transition state. In accordance with our experiments, RRKM calculations predict that the thermodynamically most stable isomer - the polycyclic aromatic hydrocarbon (PAH) indene - is not formed via this reaction. With all barriers lying below the energy of the reactants, this reaction is viable in the cold interstellar medium where several methyl-substituted molecules have been detected. Its underlying mechanism therefore advances our understanding of how methyl-substituted hydrocarbons can be formed under extreme conditions such as those found in the molecular cloud TMC-1. Implications for the chemistry of the 1-propynyl radical in astrophysical environments are also discussed.

12.
Phys Chem Chem Phys ; 21(40): 22308-22319, 2019 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-31576858

RESUMEN

The crossed molecular beam reactions of the 1-propynyl radical (CH3CC; X2A1) with ethylene (H2CCH2; X1A1g) and ethylene-d4 (D2CCD2; X1A1g) were performed at collision energies of 31 kJ mol-1 under single collision conditions. Combining our laboratory data with ab initio electronic structure and statistical Rice-Ramsperger-Kassel-Marcus (RRKM) calculations, we reveal that the reaction is initiated by the barrierless addition of the 1-propynyl radical to the π-electron density of the unsaturated hydrocarbon of ethylene leading to a doublet C5H7 intermediate(s) with a life time(s) longer than the rotation period(s). The reaction eventually produces 1-penten-3-yne (p1) plus a hydrogen atom with an overall reaction exoergicity of 111 ± 16 kJ mol-1. About 35% of p1 originates from the initial collision complex followed by C-H bond rupture via a tight exit transition state located 22 kJ mol-1 above the separated products. The collision complex (i1) can also undergo a [1,2] hydrogen atom shift to the CH3CHCCCH3 intermediate (i2) prior to a hydrogen atom release; RRKM calculations suggest that this pathway contributes to about 65% of p1. In higher density environments such as in combustion flames and circumstellar envelopes of carbon stars close to the central star, 1-penten-3-yne (p1) may eventually form the cyclopentadiene (c-C5H6) isomer via hydrogen atom assisted isomerization followed by hydrogen abstraction to the cyclopentadienyl radical (c-C5H5) as an important pathway to key precursors to polycyclic aromatic hydrocarbons (PAHs) and to carbonaceous nanoparticles.

13.
Angew Chem Int Ed Engl ; 58(43): 15488-15495, 2019 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-31368202

RESUMEN

The triafulvene molecule (c-C4 H4 )-the simplest representative of the fulvene family-has been synthesized for the first time in the gas phase through the reaction of the methylidyne radical (CH) with methylacetylene (CH3 CCH) and allene (H2 CCCH2 ) under single-collision conditions. The experimental and computational data suggest triafulvene is formed by the barrierless cycloaddition of the methylidyne radical to the π-electron density of either C3 H4 isomer followed by unimolecular decomposition through elimination of atomic hydrogen from the CH3 or CH2 groups of the reactants. The dipole moment of triafulvene of 1.90 D suggests that this molecule could represent a critical tracer of microwave-inactive allene in cold molecular clouds, thus defining constraints on the largely elusive hydrocarbon chemistry in low-temperature interstellar environments, such as that of the Taurus Molecular Cloud 1 (TMC-1).

14.
Chemphyschem ; 20(15): 1912-1917, 2019 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-31162781

RESUMEN

Methyltriacetylene - the largest methylated polyacetylene detected in deep space - has been synthesized in the gas phase via the bimolecular reaction of the 1-propynyl radical with diacetylene under single-collision conditions. The barrier-less route to methyltriacetylene represents a prototype of a polyyne chain extension through a radical substitution mechanism and provides a novel low temperature route, in which the propynyl radical piggybacks a methyl group to be incorporated into methylated polyynes. This mechanism overcomes a key obstacle in previously postulated reactions of methyl radicals with unsaturated hydrocarbon, which fail the inclusion of methyl groups into hydrocarbons due to insurmountable entrance barriers thus providing a fundamental understanding on the electronic structure, chemical bonding, and formation of methyl-capped polyacetylenes. These species are key reactive intermediates leading to carbonaceous nanostructures in molecular clouds like TMC-1.


Asunto(s)
Alquinos/síntesis química , Radicales Libres/química , Gases/química , Frío , Modelos Químicos , Termodinámica
15.
J Phys Chem A ; 123(26): 5446-5462, 2019 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-31179701

RESUMEN

The reactions of the 1-propynyl radical (CH3CC; X2A1) with two C3H4 isomers, methylacetylene (H3CCCH; X1A1) and allene (H2CCCH2; X1A1), along with their (partially) deuterated counterparts were explored at collision energies of 37 kJ mol-1, exploiting crossed molecular beams to unravel the chemical reaction dynamics to synthesize distinct C6H6 isomers under single collision conditions. The forward convolution fitting of the laboratory data along with ab initio and statistical calculations revealed that both reactions have no entrance barrier, proceed via indirect (complex-forming) reaction dynamics involving C6H7 intermediates with life times longer than their rotation period(s), and are initiated by the addition of the 1-propynyl radical with its radical center to the π-electron density of the unsaturated hydrocarbon at the terminal carbon atoms of methylacetylene (C1) and allene (C1/C3). In the methylacetylene system, the initial collision complexes undergo unimolecular decomposition via tight exit transition states by atomic hydrogen loss, forming dimethyldiacetylene (CH3CCCCCH3) and 1-propynylallene (H3CCCHCCCH2) in overall exoergic reactions (123 and 98 kJ mol-1) with a branching ratio of 9.4 ± 0.1; the methyl group of the 1-propynyl reactant acts solely as a spectator. On the other hand, in the allene system, our experimental data exhibit the formation of the fulvene (c-C5H4CH2) isomer via a six-step reaction sequence with two higher energy isomers-hexa-1,2-dien-4-yne (H2CCCHCCCH3) and hexa-1,4-diyne (HCCCH2CCCH3)-also predicted to be formed based on our statistical calculations. The pathway to fulvene advocates that, in the allene-1-propynyl system, the methyl group of the 1-propynyl reactant is actively engaged in the reaction mechanism to form fulvene. Because both reactions are barrierless and exoergic and all transition states are located below the energy of the separated reactants, the hydrogen-deficient C6H6 isomers identified in our investigation are predicted to be synthesized in low-temperature environments, such as in hydrocarbon-rich atmospheres of planets and their moons such as Titan along with cold molecular clouds such as Taurus Molecular Cloud-1.

16.
J Phys Chem A ; 123(19): 4104-4118, 2019 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-31017790

RESUMEN

The crossed beams reactions of the 1-propynyl radical (CH3CC; X2A1) with 1,3-butadiene (CH2CHCHCH2; X1Ag), 1,3-butadiene- d6 (CD2CDCDCD2; X1Ag), 1,3-butadiene- d4 (CD2CHCHCD2; X1Ag), and 1,3-butadiene- d2 (CH2CDCDCH2; X1Ag) were performed under single collision conditions at collision energies of about 40 kJ mol-1. The underlying reaction mechanisms were unraveled through the combination of the experimental data with electronic structure calculations at the CCSD(T)-F12/cc-pVTZ-f12//B3LYP/6-311G(d,p) + ZPE(B3LYP/6-311G(d,p) level of theory along with statistical Rice-Ramsperger-Kassel-Marcus (RRKM) calculations. Together, these data suggest the formation of the thermodynamically most stable C7H8 isomer-toluene (C6H5CH3)-via the barrierless addition of 1-propynyl to the 1,3-butadiene terminal carbon atom, forming a low-lying C7H9 intermediate that undergoes multiple isomerization steps resulting in cyclization and ultimately aromatization following hydrogen atom elimination. RRKM calculations predict that the thermodynamically less stable isomers 1,3-heptadien-5-yne, 5-methylene-1,3-cyclohexadiene, and 3-methylene-1-hexen-4-yne are also synthesized. Since the 1-propynyl radical may be present in cold molecular clouds such as TMC-1, this pathway could potentially serve as a carrier of the methyl group incorporating itself into methyl-substituted (poly)acetylenes or aromatic systems such as toluene via overall exoergic reaction mechanisms that are uninhibited by an entrance barrier. Such pathways are a necessary alternative to existing high energy reactions leading to toluene that are formally closed in the cold regions of space and are an important step toward understanding the synthesis of polycyclic aromatic hydrocarbons (PAHs) in space's harsh extremes.

17.
J Phys Chem Lett ; 10(6): 1264-1271, 2019 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-30817157

RESUMEN

The hitherto elusive dibridged germaniumsilylene molecule (Ge(µ-H2)Si) has been formed for the first time via the bimolecular gas-phase reaction of ground-state germanium atoms (Ge) with silane (SiH4) under single-collision conditions. Merged with state-of-the-art electronic structure calculations, the reaction was found to proceed through initial formation of a van der Waals complex in the entrance channel, insertion of the germanium into a silicon-hydrogen bond, intersystem crossing from the triplet to the singlet surface, hydrogen migrations, and eventually elimination of molecular hydrogen via a tight exit transition state, leading to the germaniumsilylene "butterfly". This investigation provides an extraordinary peek at the largely unknown silicon-germanium chemistry on the molecular level and sheds light on the essential nonadiabatic reaction dynamics of germanium and silicon, which are quite distinct from those of the isovalent carbon system, thus offering crucial insights that reveal exotic chemistry and intriguing chemical bonding in the germanium-silicon system on the most fundamental, microscopic level.

18.
J Phys Chem Lett ; 9(17): 5135-5142, 2018 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-30133285

RESUMEN

We present a combined experimental and theoretical investigation of the bimolecular gas-phase reaction of the phenyl radical (C6H5) with silane (SiH4) under single collision conditions to investigate the chemical dynamics of forming phenylsilane (C6H5SiH3) via a bimolecular radical substitution mechanism at a tetracoordinated silicon atom. Verified by electronic structure and quasiclassical trajectory calculations, the replacement of a single carbon atom in methane by silicon lowers the barrier to substitution, thus defying conventional wisdom that tetracoordinated hydrides undergo preferentially hydrogen abstraction. This reaction mechanism provides fundamental insights into the hitherto unexplored gas-phase chemical dynamics of radical substitution reactions of mononuclear main group hydrides under single collision conditions and highlights the distinct reactivity of silicon compared to its isovalent carbon. This mechanism might be also involved in the synthesis of cyanosilane (SiH3CN) and methylsilane (CH3SiH3) probed in the circumstellar envelope of the carbon star IRC+10216.

19.
J Phys Chem A ; 122(33): 6663-6672, 2018 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-30032608

RESUMEN

We investigated the 1-propynyl (CH3CC; X2A1) plus acetylene/acetylene- d2 (HCCH/DCCD; X1Σg+) under single-collision conditions using the crossed molecular beams method. The reaction was found to produce C5H4 plus atomic hydrogen (H) via an indirect reaction mechanism with a reaction energy of -123 ± 18 kJ mol-1. Using the DCCD isotopologue, we confirmed that the hydrogen atom is lost from the acetylene reactant. Our computational analysis suggests the reaction proceeds by the barrierless addition of the 1-propynyl radical to acetylene, resulting in C5H5 intermediate(s) that dissociate preferentially to methyldiacetylene (CH3CCCCH; X1A1) via hydrogen atom emission with a computed reaction energy of -123 ± 4 kJ mol-1. The barrierless nature of this reaction scheme suggests the 1-propynyl radical may be a key intermediate in hydrocarbon chain growth in cold molecular clouds like TMC-1, where methyl-substituted (poly)acetylenes are known to exist.

20.
J Phys Chem Lett ; 9(12): 3340-3347, 2018 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-29846075

RESUMEN

The bimolecular gas phase reaction of ground-state silicon (Si; 3P) with dimethylacetylene (C4H6; X1A1g) was investigated under single collision conditions in a crossed molecular beams machine. Merged with electronic structure calculations, the data propose nonadiabatic reaction dynamics leading to the formation of singlet SiC4H4 isomer(s) and molecular hydrogen (H2) via indirect scattering dynamics along with intersystem crossing (ISC) from the triplet to the singlet surface. The reaction may lead to distinct energetically accessible singlet SiC4H4 isomers (1p8-1p24) in overall exoergic reaction(s) (-107-20+12 kJ mol-1). All feasible reaction products are either cyclic, carry carbene analogous silylene moieties, or carry C-Si-H or C-Si-C bonds that would require extensive isomerization from the initial collision complex(es) to the fragmenting singlet intermediate(s). The present study demonstrates the first successful crossed beams study of an exoergic reaction channel arising from bimolecular collisions of silicon, Si(3P), with a hydrocarbon molecule.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...