Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
J Exp Med ; 221(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38442272

RESUMEN

Meningeal lymphatic vessels (MLVs) promote tissue clearance and immune surveillance in the central nervous system (CNS). Vascular endothelial growth factor-C (VEGF-C) regulates MLV development and maintenance and has therapeutic potential for treating neurological disorders. Herein, we investigated the effects of VEGF-C overexpression on brain fluid drainage and ischemic stroke outcomes in mice. Intracerebrospinal administration of an adeno-associated virus expressing mouse full-length VEGF-C (AAV-mVEGF-C) increased CSF drainage to the deep cervical lymph nodes (dCLNs) by enhancing lymphatic growth and upregulated neuroprotective signaling pathways identified by single nuclei RNA sequencing of brain cells. In a mouse model of ischemic stroke, AAV-mVEGF-C pretreatment reduced stroke injury and ameliorated motor performances in the subacute stage, associated with mitigated microglia-mediated inflammation and increased BDNF signaling in brain cells. Neuroprotective effects of VEGF-C were lost upon cauterization of the dCLN afferent lymphatics and not mimicked by acute post-stroke VEGF-C injection. We conclude that VEGF-C prophylaxis promotes multiple vascular, immune, and neural responses that culminate in a protection against neurological damage in acute ischemic stroke.


Asunto(s)
Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Animales , Ratones , Factor C de Crecimiento Endotelial Vascular , Enfermedades Neuroinflamatorias , Drenaje
3.
Stem Cell Rev Rep ; 20(4): 1135-1149, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38438768

RESUMEN

In the adult bone marrow (BM), endothelial cells (ECs) are an integral component of the hematopoietic stem cell (HSC)-supportive niche, which modulates HSC activity by producing secreted and membrane-bound paracrine signals. Within the BM, distinct vascular arteriole, transitional, and sinusoidal EC subtypes display unique paracrine expression profiles and create anatomically-discrete microenvironments. However, the relative contributions of vascular endothelial subtypes in supporting hematopoiesis is unclear. Moreover, constitutive expression and off-target activity of currently available endothelial-specific and endothelial-subtype-specific murine cre lines potentially confound data analysis and interpretation. To address this, we describe two tamoxifen-inducible cre-expressing lines, Vegfr3-creERT2 and Cx40-creERT2, that efficiently label sinusoidal/transitional and arteriole endothelium respectively in adult marrow, without off-target activity in hematopoietic or perivascular cells. Utilizing an established mouse model in which cre-dependent recombination constitutively-activates MAPK signaling within adult endothelium, we identify arteriole ECs as the driver of MAPK-mediated hematopoietic dysfunction. These results define complementary tamoxifen-inducible creERT2-expressing mouse lines that label functionally-discrete and non-overlapping sinusoidal/transitional and arteriole EC populations in the adult BM, providing a robust toolset to investigate the differential contributions of vascular subtypes in maintaining hematopoietic homeostasis.


Asunto(s)
Células Endoteliales , Integrasas , Tamoxifeno , Animales , Ratones , Células Endoteliales/metabolismo , Integrasas/metabolismo , Integrasas/genética , Tamoxifeno/farmacología , Médula Ósea/metabolismo , Ratones Transgénicos , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/citología , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/citología , Hematopoyesis
4.
Nature ; 628(8006): 204-211, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38418880

RESUMEN

The eye, an anatomical extension of the central nervous system (CNS), exhibits many molecular and cellular parallels to the brain. Emerging research demonstrates that changes in the brain are often reflected in the eye, particularly in the retina1. Still, the possibility of an immunological nexus between the posterior eye and the rest of the CNS tissues remains unexplored. Here, studying immune responses to herpes simplex virus in the brain, we observed that intravitreal immunization protects mice against intracranial viral challenge. This protection extended to bacteria and even tumours, allowing therapeutic immune responses against glioblastoma through intravitreal immunization. We further show that the anterior and posterior compartments of the eye have distinct lymphatic drainage systems, with the latter draining to the deep cervical lymph nodes through lymphatic vasculature in the optic nerve sheath. This posterior lymphatic drainage, like that of meningeal lymphatics, could be modulated by the lymphatic stimulator VEGFC. Conversely, we show that inhibition of lymphatic signalling on the optic nerve could overcome a major limitation in gene therapy by diminishing the immune response to adeno-associated virus and ensuring continued efficacy after multiple doses. These results reveal a shared lymphatic circuit able to mount a unified immune response between the posterior eye and the brain, highlighting an understudied immunological feature of the eye and opening up the potential for new therapeutic strategies in ocular and CNS diseases.


Asunto(s)
Encéfalo , Ojo , Sistema Linfático , Animales , Femenino , Humanos , Masculino , Ratones , Conejos , Bacterias/inmunología , Encéfalo/anatomía & histología , Encéfalo/inmunología , Dependovirus/inmunología , Ojo/anatomía & histología , Ojo/inmunología , Glioblastoma/inmunología , Herpesvirus Humano 2/inmunología , Inyecciones Intravítreas , Sistema Linfático/anatomía & histología , Sistema Linfático/inmunología , Vasos Linfáticos/anatomía & histología , Vasos Linfáticos/inmunología , Macaca mulatta , Meninges/inmunología , Nervio Óptico/inmunología , Porcinos , Pez Cebra , Factor C de Crecimiento Endotelial Vascular/inmunología , Factor C de Crecimiento Endotelial Vascular/metabolismo , Factor C de Crecimiento Endotelial Vascular/farmacología
6.
Sci Transl Med ; 15(720): eadi1617, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37910601

RESUMEN

The morbidity associated with pediatric medulloblastoma, in particular in patients who develop leptomeningeal metastases, remains high in the absence of effective therapies. Administration of substances directly into the cerebrospinal fluid (CSF) is one approach to circumvent the blood-brain barrier and focus delivery of drugs to the site of tumor. However, high rates of CSF turnover prevent adequate drug accumulation and lead to rapid systemic clearance and toxicity. Here, we show that PLA-HPG nanoparticles, made with a single-emulsion, solvent evaporation process, can encapsulate talazoparib, a PARP inhibitor (BMN-673). These degradable polymer nanoparticles improve the therapeutic index when delivered intrathecally and lead to sustained drug retention in the tumor as measured with PET imaging and fluorescence microscopy. We demonstrate that administration of these particles into the CSF, alone or in combination with systemically administered temozolomide, is a highly effective therapy for tumor regression and prevention of leptomeningeal spread in xenograft mouse models of medulloblastoma. These results provide a rationale for harnessing nanoparticles for the delivery of drugs limited by brain penetration and therapeutic index and demonstrate important advantages in tolerability and efficacy for encapsulated drugs delivered locoregionally.


Asunto(s)
Antineoplásicos , Neoplasias Cerebelosas , Meduloblastoma , Nanopartículas , Niño , Humanos , Ratones , Animales , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Meduloblastoma/tratamiento farmacológico , Antineoplásicos/uso terapéutico , Neoplasias Cerebelosas/tratamiento farmacológico , Líquido Cefalorraquídeo
7.
bioRxiv ; 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37398128

RESUMEN

Meningeal lymphatic vessels promote tissue clearance and immune surveillance in the central nervous system (CNS). Vascular endothelium growth factor-C (VEGF-C) is essential for meningeal lymphatic development and maintenance and has therapeutic potential for treating neurological disorders, including ischemic stroke. We have investigated the effects of VEGF-C overexpression on brain fluid drainage, single cell transcriptome in the brain, and stroke outcomes in adult mice. Intra-cerebrospinal fluid administration of an adeno-associated virus expressing VEGF-C (AAV-VEGF-C) increases the CNS lymphatic network. Post-contrast T1 mapping of the head and neck showed that deep cervical lymph node size and drainage of CNS-derived fluids were increased. Single nuclei RNA sequencing revealed a neuro-supportive role of VEGF-C via upregulation of calcium and brain-derived neurotrophic factor (BDNF) signaling pathways in brain cells. In a mouse model of ischemic stroke, AAV-VEGF-C pretreatment reduced stroke injury and ameliorated motor performances in the subacute stage. AAV-VEGF-C thus promotes CNS-derived fluid and solute drainage, confers neuroprotection, and reduces ischemic stroke damage. Short abstract: Intrathecal delivery of VEGF-C increases the lymphatic drainage of brain-derived fluids confers neuroprotection, and improves neurological outcomes after ischemic stroke.

8.
Elife ; 122023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37310207

RESUMEN

Long considered an accessory tubule of the male reproductive system, the epididymis is proving to be a key determinant of male fertility. In addition to its secretory role in ensuring functional maturation and survival of spermatozoa, the epididymis has a complex immune function. Indeed, it must manage both peripheral tolerance to sperm antigens foreign to the immune system and the protection of spermatozoa as well as the organ itself against pathogens ascending the epididymal tubule. Although our knowledge of the immunobiology of this organ is beginning to accumulate at the molecular and cellular levels, the organization of blood and lymphatic networks of this tissue, important players in the immune response, remains largely unknown. In the present report, we have taken advantage of a VEGFR3:YFP transgenic mouse model. Using high-resolution three-dimensional (3D) imaging and organ clearing coupled with multiplex immunodetections of lymphatic (LYVE1, PDPN, PROX1) and/or blood (PLVAP/Meca32) markers, we provide a simultaneous deep 3D view of the lymphatic and blood epididymal vasculature in the mature adult mouse as well as during postnatal development.


Asunto(s)
Epidídimo , Imagenología Tridimensional , Masculino , Animales , Ratones , Semen , Espermatozoides , Ratones Transgénicos
9.
Cell Mol Life Sci ; 80(7): 179, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37314567

RESUMEN

Glioblastoma (GBM) is the most common and fatal primary tumor of the central nervous system (CNS) and current treatments have limited success. Chemokine signaling regulates both malignant cells and stromal cells of the tumor microenvironment (TME), constituting a potential therapeutic target against brain cancers. Here, we investigated the C-C chemokine receptor type 7 (CCR7) and the chemokine (C-C-motif) ligand 21 (CCL21) for their expression and function in human GBM and then assessed their therapeutic potential in preclinical mouse GBM models. In GBM patients, CCR7 expression positively associated with a poor survival. CCL21-CCR7 signaling was shown to regulate tumor cell migration and proliferation while also controlling tumor associated microglia/macrophage recruitment and VEGF-A production, thereby controlling vascular dysmorphia. Inhibition of CCL21-CCR7 signaling led to an increased sensitivity to temozolomide-induced tumor cell death. Collectively, our data indicate that drug targeting of CCL21-CCR7 signaling in tumor and TME cells is a therapeutic option against GBM.


Asunto(s)
Glioblastoma , Microglía , Animales , Ratones , Humanos , Glioblastoma/tratamiento farmacológico , Receptores CCR7/genética , Macrófagos , Sistema Nervioso Central , Microambiente Tumoral , Quimiocina CCL21
10.
Cell Rep ; 42(4): 112371, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37043357

RESUMEN

The subventricular zone (SVZ) is the largest neural stem cell (NSC) niche in the adult brain; herein, the blood-brain barrier is leaky, allowing direct interactions between NSCs and endothelial cells (ECs). Mechanisms by which direct NSC-EC interactions in the adult SVZ control NSC behavior are unclear. We found that Cx43 is highly expressed by SVZ NSCs and ECs, and its deletion in either leads to increased NSC proliferation and neuroblast generation, suggesting that Cx43-mediated NSC-EC interactions maintain NSC quiescence. This is further supported by single-cell RNA sequencing and in vitro studies showing that ECs control NSC proliferation by regulating expression of genes associated with NSC quiescence and/or activation in a Cx43-dependent manner. Cx43 mediates these effects in a channel-independent manner involving its cytoplasmic tail and ERK activation. Such insights inform adult NSC regulation and maintenance aimed at stem cell therapies for neurodegenerative disorders.


Asunto(s)
Conexina 43 , Ventrículos Laterales , Células Endoteliales/metabolismo , Encéfalo/metabolismo , Neurogénesis/fisiología
11.
J Exp Med ; 220(2)2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36472584

RESUMEN

Postmortem microstructural studies together with in vivo magnetic resonance imaging show that human arachnoid granulations are porous channels that serve as transient filtration conduits for cerebrospinal fluid to flow directly into dural interstitial tissue, but not into venous sinuses (Shah et al. 2022. J. Exp. Med.https://doi.org/10.1084/jem.20220618).


Asunto(s)
Médula Ósea , Humanos
13.
Clin Transl Med ; 12(7): e939, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35808822

RESUMEN

OBJECTIVE: New therapeutic approaches are needed to improve the prognosis of glioblastoma (GBM) patients. METHODS: With the objective of identifying alternative oncogenic mechanisms to abnormally activated epidermal growth factor receptor (EGFR) signalling, one of the most common oncogenic mechanisms in GBM, we performed a comparative analysis of gene expression profiles in a series of 54 human GBM samples. We then conducted gain of function as well as genetic and pharmocological inhibition assays in GBM patient-derived cell lines to functionnally validate our finding. RESULTS: We identified that growth hormone receptor (GHR) signalling defines a distinct molecular subset of GBMs devoid of EGFR overexpression. GHR overexpression was detected in one third of patients and was associated with low levels of suppressor of cytokine signalling 2 (SOCS2) expression due to SOCS2 promoter hypermethylation. In GBM patient-derived cell lines, GHR signalling modulates the expression of proteins involved in cellular movement, promotes cell migration, invasion and proliferation in vitro and promotes tumourigenesis, tumour growth, and tumour invasion in vivo. GHR genetic and pharmacological inhibition reduced cell proliferation and migration in vitro. CONCLUSION: This study pioneers a new field of investigation to improve the prognosis of GBM patients.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Receptores ErbB/genética , Receptores ErbB/metabolismo , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Medicina de Precisión , Receptores de Somatotropina/genética , Receptores de Somatotropina/uso terapéutico
14.
J Exp Med ; 219(8)2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35776089

RESUMEN

Meningeal lymphatic vessels (MLVs) were identified in the dorsal and caudobasal regions of the dura mater, where they ensure waste product elimination and immune surveillance of brain tissues. Whether MLVs exist in the anterior part of the murine and human skull and how they connect with the glymphatic system and extracranial lymphatics remained unclear. Here, we used light-sheet fluorescence microscopy (LSFM) imaging of mouse whole-head preparations after OVA-A555 tracer injection into the cerebrospinal fluid (CSF) and performed real-time vessel-wall (VW) magnetic resonance imaging (VW-MRI) after systemic injection of gadobutrol in patients with neurological pathologies. We observed a conserved three-dimensional anatomy of MLVs in mice and humans that aligned with dural venous sinuses but not with nasal CSF outflow, and we discovered an extended anterior MLV network around the cavernous sinus, with exit routes through the foramina of emissary veins. VW-MRI may provide a diagnostic tool for patients with CSF drainage defects and neurological diseases.


Asunto(s)
Sistema Glinfático , Vasos Linfáticos , Animales , Sistema Glinfático/diagnóstico por imagen , Sistema Glinfático/patología , Humanos , Sistema Linfático , Vasos Linfáticos/diagnóstico por imagen , Imagen por Resonancia Magnética , Meninges/diagnóstico por imagen , Ratones
15.
J Clin Invest ; 131(16)2021 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-34181595

RESUMEN

SLIT2 is a secreted polypeptide that guides migration of cells expressing Roundabout 1 and 2 (ROBO1 and ROBO2) receptors. Herein, we investigated SLIT2/ROBO signaling effects in gliomas. In patients with glioblastoma (GBM), SLIT2 expression increased with malignant progression and correlated with poor survival and immunosuppression. Knockdown of SLIT2 in mouse glioma cells and patient-derived GBM xenografts reduced tumor growth and rendered tumors sensitive to immunotherapy. Tumor cell SLIT2 knockdown inhibited macrophage invasion and promoted a cytotoxic gene expression profile, which improved tumor vessel function and enhanced efficacy of chemotherapy and immunotherapy. Mechanistically, SLIT2 promoted microglia/macrophage chemotaxis and tumor-supportive polarization via ROBO1- and ROBO2-mediated PI3K-γ activation. Macrophage Robo1 and Robo2 deletion and systemic SLIT2 trap delivery mimicked SLIT2 knockdown effects on tumor growth and the tumor microenvironment (TME), revealing SLIT2 signaling through macrophage ROBOs as a potentially novel regulator of the GBM microenvironment and immunotherapeutic target for brain tumors.


Asunto(s)
Neoplasias Encefálicas/inmunología , Glioblastoma/inmunología , Péptidos y Proteínas de Señalización Intercelular/inmunología , Proteínas del Tejido Nervioso/inmunología , Receptores Inmunológicos/inmunología , Animales , Neoplasias Encefálicas/irrigación sanguínea , Neoplasias Encefálicas/patología , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Glioblastoma/irrigación sanguínea , Glioblastoma/patología , Xenoinjertos , Humanos , Tolerancia Inmunológica , Péptidos y Proteínas de Señalización Intercelular/deficiencia , Péptidos y Proteínas de Señalización Intercelular/genética , Macrófagos/inmunología , Ratones , Ratones Endogámicos C57BL , Microglía/inmunología , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Pronóstico , Transducción de Señal/inmunología , Microambiente Tumoral/inmunología , Proteínas Roundabout
17.
J Exp Med ; 218(3)2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33433624

RESUMEN

Although COVID-19 is considered to be primarily a respiratory disease, SARS-CoV-2 affects multiple organ systems including the central nervous system (CNS). Yet, there is no consensus on the consequences of CNS infections. Here, we used three independent approaches to probe the capacity of SARS-CoV-2 to infect the brain. First, using human brain organoids, we observed clear evidence of infection with accompanying metabolic changes in infected and neighboring neurons. However, no evidence for type I interferon responses was detected. We demonstrate that neuronal infection can be prevented by blocking ACE2 with antibodies or by administering cerebrospinal fluid from a COVID-19 patient. Second, using mice overexpressing human ACE2, we demonstrate SARS-CoV-2 neuroinvasion in vivo. Finally, in autopsies from patients who died of COVID-19, we detect SARS-CoV-2 in cortical neurons and note pathological features associated with infection with minimal immune cell infiltrates. These results provide evidence for the neuroinvasive capacity of SARS-CoV-2 and an unexpected consequence of direct infection of neurons by SARS-CoV-2.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Anticuerpos Bloqueadores/química , COVID-19 , Corteza Cerebral , Neuronas , SARS-CoV-2/metabolismo , Enzima Convertidora de Angiotensina 2/antagonistas & inhibidores , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , COVID-19/metabolismo , COVID-19/patología , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Corteza Cerebral/virología , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Neuronas/metabolismo , Neuronas/patología , Neuronas/virología , Organoides/metabolismo , Organoides/patología , Organoides/virología
18.
bioRxiv ; 2020 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-32935108

RESUMEN

Although COVID-19 is considered to be primarily a respiratory disease, SARS-CoV-2 affects multiple organ systems including the central nervous system (CNS). Yet, there is no consensus whether the virus can infect the brain, or what the consequences of CNS infection are. Here, we used three independent approaches to probe the capacity of SARS-CoV-2 to infect the brain. First, using human brain organoids, we observed clear evidence of infection with accompanying metabolic changes in the infected and neighboring neurons. However, no evidence for the type I interferon responses was detected. We demonstrate that neuronal infection can be prevented either by blocking ACE2 with antibodies or by administering cerebrospinal fluid from a COVID-19 patient. Second, using mice overexpressing human ACE2, we demonstrate in vivo that SARS-CoV-2 neuroinvasion, but not respiratory infection, is associated with mortality. Finally, in brain autopsy from patients who died of COVID-19, we detect SARS-CoV-2 in the cortical neurons, and note pathologic features associated with infection with minimal immune cell infiltrates. These results provide evidence for the neuroinvasive capacity of SARS-CoV2, and an unexpected consequence of direct infection of neurons by SARS-CoV-2.

20.
J Vis Exp ; (159)2020 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-32510513

RESUMEN

The lymphatic system associated with the central nervous system (CNS) includes the lymphatic vasculature that spins around the brain, the spinal cord, and its associated LNs. The CNS-associated lymphatic system is involved in the drainage of CSF macromolecules and meningeal immune cells toward CNS-draining LNs, thereby regulating waste clearance and immune surveillance within CNS tissues. Presented is a novel approach to obtain three-dimensional (3D) and cellular resolution images of CNS-associated lymphatics while preserving the integrity of their circuits within surrounding tissues. The iDISCO+ protocol is used to immunolabel lymphatic vessels in decalcified and cleared whole mount preparations of the vertebral column that are subsequently imaged with light sheet fluorescence microscopy (LSFM). The technique reveals the 3D structure of the lymphatic network connecting the meningeal and epidural spaces around the spinal cord to extravertebral lymphatic vessels. Provided are 3D images of the drainage circuits of molecular tracers previously injected into either the CSF via the cisterna magna or the thoracolumbar spinal parenchyma. The iDISCO+/LSFM approach brings unprecedented opportunities to explore the structure and function of the CNS-associated lymphatic system in neurovascular biology, neuroimmunology, brain and vertebral cancer, or vertebral bone and joint biology.


Asunto(s)
Imagenología Tridimensional , Luz , Vasos Linfáticos/diagnóstico por imagen , Vasos Linfáticos/fisiología , Microscopía Fluorescente , Neovascularización Fisiológica , Columna Vertebral/irrigación sanguínea , Sistema Nervioso Central/irrigación sanguínea , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...