Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Fluids Barriers CNS ; 21(1): 27, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38491505

RESUMEN

BACKGROUND: A principal protective component of the mammalian blood-brain barrier (BBB) is the high expression of the multidrug efflux transporters P-glycoprotein (P-gp, encoded by ABCB1) and ABCG2 (encoded by ABCG2) on the lumenal surface of endothelial cells. The zebrafish P-gp homolog Abcb4 is expressed at the BBB and phenocopies human P-gp. Comparatively little is known about the four zebrafish homologs of the human ABCG2 gene: abcg2a, abcg2b, abcg2c, and abcg2d. Here we report the functional characterization and brain tissue distribution of zebrafish ABCG2 homologs. METHODS: To determine substrates of the transporters, we stably expressed each in HEK-293 cells and performed cytotoxicity and fluorescent efflux assays with known ABCG2 substrates. To assess the expression of transporter homologs, we used a combination of RNAscope in situ hybridization probes and immunohistochemistry to stain paraffin-embedded sections of adult and larval zebrafish. RESULTS: We found Abcg2a had the greatest substrate overlap with ABCG2, and Abcg2d appeared to be the least functionally similar. We identified abcg2a as the only homolog expressed at the adult and larval zebrafish BBB, based on its localization to claudin-5 positive brain vasculature. CONCLUSIONS: These results demonstrate the conserved function of zebrafish Abcg2a and suggest that zebrafish may be an appropriate model organism for studying the role of ABCG2 at the BBB.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Barrera Hematoencefálica , Pez Cebra , Adulto , Animales , Humanos , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Barrera Hematoencefálica/metabolismo , Células Endoteliales/metabolismo , Células HEK293 , Mamíferos/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Pez Cebra/metabolismo
2.
bioRxiv ; 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-37425689

RESUMEN

Background: A principal protective component of the mammalian blood-brain barrier (BBB) is the high expression of the multidrug efflux transporters P-glycoprotein (P-gp, encoded by ABCB1) and ABCG2 (encoded by ABCG2) on the lumenal surface of endothelial cells. The zebrafish P-gp homolog Abcb4 is expressed at the BBB and phenocopies human P-gp. Comparatively little is known about the four zebrafish homologs of the human ABCG2 gene: abcg2a, abcg2b, abcg2c, and abcg2d. Here we report the functional characterization and brain tissue distribution of zebrafish ABCG2 homologs. Methods: To determine substrates of the transporters, we stably expressed each in HEK-293 cells and performed cytotoxicity and fluorescent efflux assays with known ABCG2 substrates. To assess the expression of transporter homologs, we used a combination of RNAscope in situ hybridization probes and immunohistochemistry to stain paraffin-embedded sections of adult and larval zebrafish. Results: We found Abcg2a had the greatest substrate overlap with ABCG2, and Abcg2d appeared to be the least functionally similar. We identified abcg2a as the only homolog expressed at the adult and larval zebrafish BBB, based on its localization to claudin-5 positive brain vasculature. Conclusions: These results demonstrate the conserved function of zebrafish Abcg2a and suggest that zebrafish may be an appropriate model organism for the studying the role of ABCG2 at the BBB.

3.
Drug Resist Updat ; 72: 101035, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38141369

RESUMEN

Zebrafish have proved to be invaluable for modeling complex physiological processes shared by all vertebrate animals. Resistance of cancers and other diseases to drug treatment can occur owing to expression of the ATP-dependent multidrug transporters ABCB1, ABCG2, and ABCC1, either because of expression of these transporters by the target cells to reduce intracellular concentrations of cytotoxic drugs at barrier sites such as the blood-brain barrier (BBB) to limit penetration of drugs into privileged compartments, or by affecting the absorption, distribution, and excretion of drugs administered orally, through the skin, or directly into the bloodstream. We describe the drug specificity, cellular localization, and function of zebrafish orthologs of multidrug resistance ABC transporters with the goal of developing zebrafish models to explore the physiological and pathophysiological functions of these transporters. Finally, we provide context demonstrating the utility of zebrafish in studying cancer drug resistance. Our ultimate goal is to improve treatment of cancer and other diseases which are affected by ABC multidrug resistance transporters.


Asunto(s)
Antineoplásicos , Neoplasias , Animales , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Transporte de Membrana , Resistencia a Múltiples Medicamentos/genética , Antineoplásicos/farmacología , Neoplasias/tratamiento farmacológico , Neoplasias/genética
4.
bioRxiv ; 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37986908

RESUMEN

ATP-binding cassette (ABC) transporters expressed at the blood-brain barrier (BBB) impede delivery of therapeutic agents to the brain, including agents to treat neurodegenerative diseases and primary and metastatic brain cancers. Two transporters, P-glycoprotein (P-gp, ABCB1) and ABCG2, are highly expressed at the BBB and are responsible for the efflux of numerous clinically useful chemotherapeutic agents, including irinotecan, paclitaxel, and doxorubicin. Based on a previous mouse model, we have generated transgenic zebrafish in which expression of NanoLuciferase (NanoLuc) is controlled by the promoter of glial fibrillary acidic protein, leading to expression in zebrafish glia. To identify agents that disrupt the BBB, including inhibitors of ABCB1 and ABCG2, we identified NanoLuc substrates that are also transported by P-gp, ABCG2, and their zebrafish homologs. These substrates will elevate the amount of bioluminescent light produced in the transgenic zebrafish with BBB disruption. We transfected HEK293 cells with NanoLuc and either human ABCB1, ABCG2, or their zebrafish homologs Abcb4 or Abcg2a, respectively, and expressed at the zebrafish BBB. We evaluated the luminescence of ten NanoLuc substrates, then screened the eight brightest to determine which are most efficiently effluxed by the ABC transporters. We identified one substrate efficiently pumped out by ABCB1, two by Abcb4, six by ABCG2, and four by Abcg2a. These data will aid in the development of a transgenic zebrafish model of the BBB to identify novel BBB disruptors and should prove useful in the development of other animal models that use NanoLuc as a reporter.

5.
Invest Ophthalmol Vis Sci ; 62(12): 16, 2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-34533562

RESUMEN

Purpose: Over 90% of uveal melanomas harbor pathogenic variants of the GNAQ or GNA11 genes that activate survival pathways. As previous studies found that Ras-mutated cell lines were vulnerable to a combination of survival pathway inhibitors and the histone-deacetylase inhibitor romidepsin, we investigated whether this combination would be effective in models of uveal melanoma. Methods: A small-scale screen of inhibitors of bromodomain-containing protein 4 (BRD4; OTX-015), extracellular signal-related kinase (ERK; ulixertinib), mechanistic target of rapamycin (mTOR; AZD-8055), or phosphoinositide 3-kinase (PI3K; GDC-0941) combined with a clinically relevant administration of romidepsin was performed on a panel of uveal melanoma cell lines (92.1, Mel202, MP38, and MP41) and apoptosis was quantified by flow cytometry after 48 hours. RNA sequencing analysis was performed on Mel202 cells treated with romidepsin alone, AZD-8055 alone, or the combination, and protein changes were validated by immunoblot. Results: AZD-8055 with romidepsin was the most effective combination in inducing apoptosis in the cell lines. Increased caspase-3 and PARP cleavage were noted in the cell lines when they were treated with romidepsin and mTOR inhibitors. RNA sequencing analysis of Mel202 cells revealed that apoptosis was the most affected pathway in the romidepsin/AZD-8055-treated cells. Increases in pro-apoptotic BCL2L11 and decreases in anti-apoptotic BIRC5 and BCL2L1 transcripts noted in the sequencing analysis were confirmed at the protein level in Mel202 cells. Conclusions: Our data suggest that romidepsin in combination with mTOR inhibition could be an effective treatment strategy against uveal melanoma due in part to changes in apoptotic proteins.


Asunto(s)
Apoptosis/efectos de los fármacos , Depsipéptidos/uso terapéutico , Inhibidores de Histona Desacetilasas/uso terapéutico , Histona Desacetilasas/metabolismo , Melanoma/tratamiento farmacológico , Morfolinas/uso terapéutico , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Neoplasias de la Úvea/tratamiento farmacológico , Proteína 11 Similar a Bcl2/genética , Caspasa 3/metabolismo , Línea Celular Tumoral , Combinación de Medicamentos , Citometría de Flujo , Subunidades alfa de la Proteína de Unión al GTP/genética , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Regulación Neoplásica de la Expresión Génica/fisiología , Humanos , Immunoblotting , Melanoma/genética , Melanoma/metabolismo , Melanoma/patología , Poli(ADP-Ribosa) Polimerasas/metabolismo , Epitelio Pigmentado de la Retina/efectos de los fármacos , Análisis de Secuencia de ARN , Survivin/genética , Neoplasias de la Úvea/genética , Neoplasias de la Úvea/metabolismo , Neoplasias de la Úvea/patología , Proteína bcl-X/genética
6.
Cancer Drug Resist ; 4: 620-633, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34308273

RESUMEN

The brain is protected from toxins by a tightly regulated network of specialized cells, including endothelial cells, pericytes, astrocyes, and neurons, known collectively as the blood-brain barrier (BBB). This selectively permeable barrier permits only the most crucial molecules essential for brain function to enter and employs a number of different mechanisms to prevent the entry of potentially harmful toxins and pathogens. In addition to a physical barrier comprised of endothelial cells that form tight junctions to restrict paracellular transport, there is an active protective mechanism made up of energy-dependent transporters that efflux compounds back into the bloodstream. Two of these ATP-binding cassette (ABC) transporters are highly expressed at the BBB: P-glycoprotein (P-gp, encoded by the ABCB1 gene) and ABCG2 (encoded by the ABCG2 gene). Although a number of in vitro and in vivo systems have been developed to examine the role that ABC transporters play in keeping compounds out of the brain, all have inherent advantages and disadvantages. Zebrafish (Danio rerio) have become a model of interest for studies of the BBB due to the similarities between the zebrafish and mammalian BBB systems. In this review, we discuss what is known about ABC transporters in zebrafish and what information is still needed before the zebrafish can be recommended as a model to elucidate the role of ABC transporters at the BBB.

7.
Essays Biochem ; 63(5): 553-567, 2019 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-31551325

RESUMEN

Cell migration requires cells to sense and interpret an array of extracellular signals to precisely co-ordinate adhesion dynamics, local application of mechanical force, polarity signalling and cytoskeletal dynamics. Adhesion receptors and growth factor receptors (GFRs) exhibit functional and signalling characteristics that individually contribute to cell migration. Integrins transmit bidirectional mechanical forces and transduce long-range intracellular signals. GFRs are fast acting and highly sensitive signalling machines that initiate signalling cascades to co-ordinate global cellular processes. Syndecans are microenvironment sensors that regulate GTPases to control receptor trafficking, cytoskeletal remodelling and adhesion dynamics. However, an array of crosstalk mechanisms exists, which co-ordinate and integrate the functions of the different receptor families. Here we discuss the nature of adhesion receptor and GFR crosstalk mechanisms. The unifying theme is that efficient cell migration requires precise spatial and temporal co-ordination of receptor crosstalk. However, a higher order of complexity emerges; whereby multiple crosstalk mechanisms are integrated and subject to both positive and negative feedbacks. Exquisite and sensitive control of these mechanisms ensures that mechanical forces and pro-migratory signals are triggered in the right place and at the right time during cell migration. Finally, we discuss the challenges, and potential therapeutic benefits, associated with deciphering this complexity.


Asunto(s)
Movimiento Celular/fisiología , Integrinas/metabolismo , Receptor Cross-Talk/fisiología , Receptores de Factores de Crecimiento/metabolismo , Animales , Humanos , Transducción de Señal/fisiología , Sindecanos/metabolismo
8.
Cell Syst ; 9(2): 187-206.e16, 2019 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-31445892

RESUMEN

Tumor cells encounter a myriad of physical cues upon arrest and extravasation in capillary beds. Here, we examined the role of physical factors in non-random organ colonization using a zebrafish xenograft model. We observed a two-step process by which mammalian mammary tumor cells showed non-random organ colonization. Initial homing was driven by vessel architecture, where greater numbers of cells became arrested in the topographically disordered blood vessels of the caudal vascular plexus (CVP) than in the linear vessels in the brain. Following arrest, bone-marrow- and brain-tropic clones exhibited organ-specific patterns of extravasation. Extravasation was mediated by ß1 integrin, where knockdown of ß1 integrin reduced extravasation in the CVP but did not affect extravasation of a brain-tropic clone in the brain. In contrast, silencing myosin 1B redirected early colonization from the brain to the CVP. Our results suggest that organ selectivity is driven by both vessel topography and cell-type-dependent extravasation.


Asunto(s)
Carcinogénesis/metabolismo , Movimiento Celular/fisiología , Especificidad de Órganos/fisiología , Animales , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/fisiopatología , Línea Celular Tumoral , Integrina beta1/metabolismo , Miosina Tipo I/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto/métodos , Pez Cebra/embriología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...